Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Utility-Scale Solar Pv Performance Enhancements Through System Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raúl Bayoán Cal Jan 2020

Utility-Scale Solar Pv Performance Enhancements Through System Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The …


Utility-Scale Solar Pv Performance Enhancements Through System-Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raul Bayoan Cal Jan 2020

Utility-Scale Solar Pv Performance Enhancements Through System-Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The …


Assessing Spacing Impact On Coherent Features In A Wind Turbine Array Boundary Layer, Naseem Ali, Nicholas Hamilton, Dominic Delucia, Raúl Bayoán Cal Feb 2018

Assessing Spacing Impact On Coherent Features In A Wind Turbine Array Boundary Layer, Naseem Ali, Nicholas Hamilton, Dominic Delucia, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

As wind farms become larger, the spacing between turbines becomes a significant design consideration that can impose serious economic constraints. To investigate the turbulent flow structures in a 4 x 3 Cartesian wind turbine array boundary layer (WTABL), a wind tunnel experiment was carried out parameterizing the streamwise and spanwise wind turbine spacing. Four cases are chosen spacing turbines by 6 or 3D in the streamwise direction, and 3 or 1:5D in the spanwise direction, where D = 12 cm is the rotor diameter. Data are obtained experimentally using stereo particle image velocimetry. Mean streamwise velocity showed maximum …


The Effect Of Microencapsulated Phase-Change Material On The Compressive Strength Of Structural Concrete, Chad Norvell, David J. Sailor, Peter Dusicka Jul 2013

The Effect Of Microencapsulated Phase-Change Material On The Compressive Strength Of Structural Concrete, Chad Norvell, David J. Sailor, Peter Dusicka

Mechanical and Materials Engineering Faculty Publications and Presentations

Latent heat energy storage through phase-change materials (PCMs) is one possible strategy to control interior temperatures in buildings, improve thermal comfort, and passively reduce building energy use associated with heating and cooling. While PCMs integrated into building structure elements have been studied since the 1970s, challenges of integrating PCMs into building materials while maintaining their heat storage benefits have limited their application in practice. The recent introduction of microencapsulated phase-change materials provides the energy storage capability of PCMs in micron-scale, chemically-inert capsules that can be easily integrated into composite materials such as gypsum wallboard and concrete. The size and physical …