Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Antenna Radiation Element Designs For 5g Applications, Zhijun Gui Dec 2020

Antenna Radiation Element Designs For 5g Applications, Zhijun Gui

Electrical Engineering Undergraduate Honors Theses

This thesis introduced the advantage of the fifth-generation network and gave examples to the three major classes of applications categorized by International Telecommunication Union-Radiocommunication Sector. In this work, a patch antenna and a board-band bow-tie antenna with microelectromechanical switch design were modified to meet 5G communication purposes. The revised patch antenna produced a minimum S11 of -57.92dB, a resonant frequency at the 28GHz, and bandwidth of 4.55GHz. The modified design meets the requirements for wireless communication purposes. During the duplication process of the board-band bow-tie antenna design, multiple discrepancies were found, and the proposed results were not able to achieve. …


Methods Of High-Fidelity, High-Efficiency Class-D Audio Amplification, Kaleb Kassaw May 2020

Methods Of High-Fidelity, High-Efficiency Class-D Audio Amplification, Kaleb Kassaw

Electrical Engineering Undergraduate Honors Theses

Gallium nitride-based field effect transistors (FETs) have opened a path for full-frequency-range class-D audio amplifiers with low distortion and noise, thanks to their ability to switch at much higher frequencies than that of the upper range of human hearing. Compared to traditional silicon-based transistors, GaN-based transistors offer superior efficiencies, particularly at power levels below their maxima. Paired with an analog-to-digital converter, digital signal processor, and pulse-code modulation to pulse-width modulation converter, these transistors are used to design and implement a solid-state amplifier capable of generating 100 watts of output through speakers with an impedance of 8 ohms using a 1-volt …


Smart Textiles As The Digital Interface Of The Future, Audra Beneux May 2020

Smart Textiles As The Digital Interface Of The Future, Audra Beneux

Electrical Engineering Undergraduate Honors Theses

The growing field of smart textiles could change everyday life, adding an element of interactivity to commonly used items such as clothing and furniture. Smart textiles measure then respond to external stimuli. For scalability in the future, smart textiles must be produced using conventional textile manufacturing craftsmanship. The resulting textile must be durable and comfortable while retaining electrical capabilities. Smart textiles can be fabricating through embroidery, weaving, and knitting using conductive threads. Electronics can also be printed onto textiles. Researchers are also creating higher-order electronics, such as the transistor, on the fiber-level to make the technology in smart textiles as …


Design And Verification Of Search Coil Inductance For Pulse Induction Metal Detection, David Desrochers May 2020

Design And Verification Of Search Coil Inductance For Pulse Induction Metal Detection, David Desrochers

Electrical Engineering Undergraduate Honors Theses

As violent attacks have increased at different venues such as schools, the need for affordable and effective metallic weapon detection has increased. Probing and scanning detection wands are the most common seen in use by guards. This project seeks to combine both probing and scanning coils into one pulse induction metal detector. The use of one drive circuit for both LC coil tank circuits further economizes the system. ANSYS Maxwell electromagnetic simulations are used to develop the geometries needed for sensitive metal detection. Analytical, simulation, and experimental methods are used to first verify the design flow for solenoid inductors. These …