Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Design Of Post-Consumer Modification Of Standard Solar Modules To Form Large-Area Building-Integrated Photovoltaic Roof Slates, Joshua M. Pearce, Jay Meldrum, Nolan Osborne Nov 2017

Design Of Post-Consumer Modification Of Standard Solar Modules To Form Large-Area Building-Integrated Photovoltaic Roof Slates, Joshua M. Pearce, Jay Meldrum, Nolan Osborne

Department of Materials Science and Engineering Publications

Building-integrated photovoltaic (BIPV) systems have improved aesthetics but generally cost far more than conventional PV systems because of small manufacturing scale. Thus, in the short and medium term, there is a need for a BIPV mounting system that utilizes conventional modules. Such a design is provided here with a novel modification of conventional photovoltaic (PV) modules to allow them to act as BIPV roofing slates. The open-source designs for the mechanical components necessary to provide the post-consumer conversion for a conventional PV module are provided, and prototypes are fabricated and installed on a mock roof system along with control modules …


General Design Procedures For Airport-Based Solar Photovoltaic Systems, Anurag Anurag, Jiemin Zhang, Jephias Gwamuri, Joshua M. Pearce Aug 2017

General Design Procedures For Airport-Based Solar Photovoltaic Systems, Anurag Anurag, Jiemin Zhang, Jephias Gwamuri, Joshua M. Pearce

Department of Materials Science and Engineering Publications

A source of large surface areas for solar photovoltaic (PV) farms that has been largely overlooked in the 13,000 United States of America (U.S.) airports. This paper hopes to enable PV deployments in most airports by providing an approach to overcome the three primary challenges identified by the Federal Aviation Administration (FAA): (1) reflectivity and glare; (2) radar interference; and (3) physical penetration of airspace. First, these challenges and precautions that must be adhered to for safe PV projects deployment at airports are reviewed and summarized. Since one of the core concerns for PV and airport symbiosis is solar panel …


Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography, Chenlong Zhang, Sandra Cvetanovic, Joshua M. Pearce Jul 2017

Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography, Chenlong Zhang, Sandra Cvetanovic, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Recent advances in the use of plasmonic metamaterials to improve absorption of light in thin-film solar photovoltaic devices has created a demand for a scalable method of patterning large areas with metal nanostructures deposited in an ordered array. This article describes two methods of fabricating ordered 2D nanosphere colloidal films: spin coating and interface coating. The two methods are compared and parameter optimization discussed. The study reveals that:

• For smaller nanosphere sizes, spin coating is more favorable, while for larger nanospheres, the angled interface coating provides more coverage and uniformity.

• A surfactant-free approach for interface coating is developed …


Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart Jul 2017

Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart

Electrical and Computer Engineering ETDs

ABSTRACT

As technologies advance, the rate at which renewable power sources, such as solar photovoltaic (PV) and wind, are being added to the power grid is increasing. Typically, PV power plants require large inverters for direct current to alternating current (DC-AC) power conversion, as well as large transformers to step up voltages to the grid voltage. Offshore wind farms and large PV power plants in remote locations often aggregate power on a DC bus in order to improve efficiency and reduce the cost of power conversion hardware within the energy complex. However, the power must still be converted to AC …


Modeling And Charging Control Of A Lithium Ion Battery System For Solar Panels, Garrett David Heinen Jun 2017

Modeling And Charging Control Of A Lithium Ion Battery System For Solar Panels, Garrett David Heinen

Master's Theses

The advancement in solar panel and battery technology makes them useful for energy supply and storage. This thesis involves the modeling and charging control of a lithium ion battery system for solar panels. The proposed model is based on the parameters and characteristics of a realistic battery and solar panel system; and the hybrid control approach combines the advantages of the adaptive incremental conductance method and the perturb and observe method to track the maximum power point of the solar panel for charging the battery unit. Computer simulation results demonstrate that this proposed approach offers a faster convergence rate than …


Effective Pv Output Fluctuation Smoothing Based On Frequency Analysis And Different Weather Patterns, Kuei Hsu Kuo May 2017

Effective Pv Output Fluctuation Smoothing Based On Frequency Analysis And Different Weather Patterns, Kuei Hsu Kuo

Theses and Dissertations

As the Hybrid Energy Storage System (HESS) has the advantages of both power-based and energy-based energy storage devices. It is suitable for a microgrid to smooth the power fluctuation. Analyze the power data of a grid-connected photovoltaic (PV) power station. This research considers grid-connected PV requirements to join the HESS and take advantage of the HESS charge and discharge characteristics to reduce the problems caused by light intensity and temperature change of grid-connected PV power output fluctuations. Using battery optimization control strategies to reduce power and capacity of the HESS configuration. This paper Analyze the effect evaluation when HESS rated …


Small-Scale Electric Vehicle Dc-Dc Converter For Nano-Grids Applications, Adam Johnston, Mason Johnson, John Sweat, Adel El-Shahat Jan 2017

Small-Scale Electric Vehicle Dc-Dc Converter For Nano-Grids Applications, Adam Johnston, Mason Johnson, John Sweat, Adel El-Shahat

Department of Electrical & Computer Engineering Faculty Research & Publications

Have you ever wondered what it would be like to have a self-sustained charging system that does not cost you any money on your electric bill? Electric car owners know that even though their cars do not require gasoline to run, they will require electricity and like everyone else that is tied to the grid will have to pay a price per kilowatt hour that is determined by their utility company. With gasoline prices falling somewhat in the past year the hype of electric vehicles has been somewhat less but who knows what the oil market is going to be …


Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod Jan 2017

Structure Stability And Optical Response Of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study, Siddharth Narendrakumar Rathod

Browse all Theses and Dissertations

A third-generation of solar cell is based on organic-inorganic hybrid perovskite materials. These have reached up to 22.1% conversion efficiency through exponential growth just within the last decade, compared to much longer improvement times for other photovoltaic technologies. Lead halide perovskites are among the most commonly used materials in this context. Despite the relatively large number of available works on some of these materials, in particular CH3NH3PbI3, others are less investigated. Here, we focused on CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 for assessing structure stability and optical response. Using quantum-mechanics-based first principles approaches, we calculated the optimized structures of these three materials …


Probabilistics Risk Assessment Of Power Quality Variations And Events Under Temporal And Spatial Characteristic Of Increased Pv Integration In Low Voltage Distribution Networks, Shivananda Pukhrem, Malabika Basu, Michael Conlon Jan 2017

Probabilistics Risk Assessment Of Power Quality Variations And Events Under Temporal And Spatial Characteristic Of Increased Pv Integration In Low Voltage Distribution Networks, Shivananda Pukhrem, Malabika Basu, Michael Conlon

Articles

Integration of PVDG reduces the voltage unbalance as compared with no or low PVDG penetration. There is a higher probability of observing deep sag at the site as PVDG integration increases. This probabilistic approach can be used as a tool to assess the likely impacts due to PVDG integration against the worst-case scenarios.


Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani Jan 2017

Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani

Browse all Theses and Dissertations

Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer …


Indirect Adaptive Neurofuzzy Hermite Wavelet Based Control Of Pv In A Grid-Connected Hybrid Power System, Sidra Mumtaz, Laiq Khan Jan 2017

Indirect Adaptive Neurofuzzy Hermite Wavelet Based Control Of Pv In A Grid-Connected Hybrid Power System, Sidra Mumtaz, Laiq Khan

Turkish Journal of Electrical Engineering and Computer Sciences

Owing to the evolution of the smart grid, the emergence of hybrid power systems (HPSs), and the proliferation of plug-in-hybrid electric vehicles, the development of efficient and robust maximum power point tracking (MPPT) algorithms for renewable energy sources due to their inherent intermittent nature has overwhelmed the power industry. In this paper, an incremental conductance (IC) based Hermite wavelet incorporated neurofuzzy indirect adaptive MPPT control paradigm for a photovoltaic (PV) system in a grid-connected HPS is proposed. The performance of the proposed adaptive Hermite wavelet incorporated neurofuzzy MPPT control paradigm is validated through a comprehensive grid-connected HPS test-bed developed in …