Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of Nevada, Las Vegas

Mechanical Engineering Faculty Research

Series

2010

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao Jan 2010

On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao

Mechanical Engineering Faculty Research

The polarization of a charged, dielectric, spherical particle with a hydrodynamically slipping surface under the influence of a uniform alternating electric field is studied by solving the standard model (the Poisson–Nernst–Planck equations). The dipole moment characterizing the strength of the polarization is computed as a function of the double layer thickness, the electric field frequency, the particle’s surface charge, and the slip length. Our studies reveal that two processes contribute to the dipole moment: ion transport inside the double layer driven by the electric field and the particle’s electrophoretic motion. The hydrodynamic slip will simultaneously impact both processes. In the …


Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao Jan 2010

Electro-Osmotic Flow Over A Charged Superhydrophobic Surface, Hui Zhao

Mechanical Engineering Faculty Research

Bubbles can be trapped inside textured structures such as grooves, forming a superhydrophobic surface. A superhydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many interesting applications in microfluidics. However, recent theoretical studies suggested that electro-osmotic flows over a weakly charged superhydrophobic surface

the zeta potential of the surface is smaller than the thermal potential (25 mV) can only be enhanced when liquid-gas interfaces are charged [T. M. Squires, Phys. Fluids 20, 092105 (2008); Bahga et al., J. Fluid Mech. 644, 245 (2010)]. So …