Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 39

Full-Text Articles in Entire DC Network

3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges Dec 2017

3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges

Graduate Theses and Dissertations

3D printing was used to fabricate porous artificial knee meniscus material from biocompatible polymeric blends of polycarbonate-urethane (PCU) and ultra-high-molecular-weight polyethylene (UHMWPE) to enable “weep” lubrication that mimics the native meniscus. 3D printed and molded pure PCU, as well as molded PCU and UHMWPE, were used for comparison. Preliminary printing was done to evaluate the impact of process parameters on the results. The samples were subject to a variety of rotational oscillating friction and wear tests under simulated body fluid and loading conditions to replicate the natural motion of the knee. Results show that 3D printed PCU samples yielded a …


Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner Dec 2017

Free-Space Measurements Of Dielectrics And Three-Dimensional Periodic Metamaterials, Clifford E. Kintner

Graduate Theses and Dissertations

This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001” thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12” × 12” × 1” in total. We use a free-space broadband system comprised of a pair …


Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei Dec 2017

Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei

Graduate Theses and Dissertations

Nextnano³ software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as …


Mppt Control For Solar Splash Photovoltaic Array, Kelsey Zenko Dec 2017

Mppt Control For Solar Splash Photovoltaic Array, Kelsey Zenko

Mechanical Engineering Undergraduate Honors Theses

This thesis demonstrates the ability to model and simulate the operation of Maximum Power Point Tracking, MPPT. Moreover, the MPPT technology is contextualized within the confines of the Solar Splash competition to provide the foundation for future model development and simulation for optimal competition performance. MatLab Simulink was used to model the solar panel's operation. A MPPT algorithm was written using the perturb and observe method and was implemented in the model using a buck DC to DC converter. The performance of the model with hardware in the loop using Typhoon and dSPACE, which demonstrated how the actual hardware would …


A Silicon Carbide Power Management Solution For High Temperature Applications, Robert Murphree Dec 2017

A Silicon Carbide Power Management Solution For High Temperature Applications, Robert Murphree

Graduate Theses and Dissertations

The increasing demand for discrete power devices capable of operating in high temperature and high voltage applications has spurred on the research of semiconductor materials with the potential of breaking through the limitations of traditional silicon. Gallium nitride (GaN) and silicon carbide (SiC), both of which are wide bandgap materials, have garnered the attention of researchers and gradually gained market share. Although these wide bandgap power devices enable more ambitious commercial applications compared to their silicon-based counterparts, reaching their potential is contingent upon developing integrated circuits (ICs) capable of operating in similar environments.

The foundation of any electrical system is …


The Development Of Novel Interconnection Technologies For 3d Packaging Of Wire Bondless Silicon Carbide Power Modules, Sayan Seal Dec 2017

The Development Of Novel Interconnection Technologies For 3d Packaging Of Wire Bondless Silicon Carbide Power Modules, Sayan Seal

Graduate Theses and Dissertations

This dissertation advances the cause for the 3D packaging and integration of silicon carbide power modules. 3D wire bondless approaches adopted for enhancing the performance of silicon power modules were surveyed, and their merits were assessed to serve as a vision for the future of SiC power packaging. Current efforts pursuing 3D wire bondless SiC power modules were investigated, and the concept for a novel SiC power module was discussed. This highly-integrated SiC power module was assessed for feasibility, with a focus on achieving ultralow parasitic inductances in the critical switching loops. This will enable higher switching frequencies, leading to …


Power Interface Design And System Stability Analysis For 400 V Dc-Powered Data Centers, Yuzhi Zhang Dec 2017

Power Interface Design And System Stability Analysis For 400 V Dc-Powered Data Centers, Yuzhi Zhang

Graduate Theses and Dissertations

The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments.

This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers.

A 400 …


Asynchronous 3d (Async3d): Design Methodology And Analysis Of 3d Asynchronous Circuits, Francis Corpuz Sabado Dec 2017

Asynchronous 3d (Async3d): Design Methodology And Analysis Of 3d Asynchronous Circuits, Francis Corpuz Sabado

Graduate Theses and Dissertations

This dissertation focuses on the application of 3D integrated circuit (IC) technology on asynchronous logic paradigms, mainly NULL Convention Logic (NCL) and Multi-Threshold NCL (MTNCL). It presents the Async3D tool flow and library for NCL and MTNCL 3D ICs. It also analyzes NCL and MTNCL circuits in 3D IC. Several FIR filter designs were implement in NCL, MTNCL, and synchronous architecture to compare synchronous and asynchronous circuits in 2D and 3D ICs. The designs were normalized based on performance and several metrics were measured for comparison. Area, interconnect length, power consumption, and power density were compared among NCL, MTNCL, and …


Energy-Aware Sparse Sensing Of Spatial-Temporally Correlated Random Fields, Zuoen Wang Dec 2017

Energy-Aware Sparse Sensing Of Spatial-Temporally Correlated Random Fields, Zuoen Wang

Graduate Theses and Dissertations

This dissertation focuses on the development of theories and practices of energy aware sparse sensing schemes of random fields that are correlated in the space and/or time domains. The objective of sparse sensing is to reduce the number of sensing samples in the space and/or time domains, thus reduce the energy consumption and complexity of the sensing system. Both centralized and decentralized sensing schemes are considered in this dissertation.

Firstly we study the problem of energy efficient Level set estimation (LSE) of random fields correlated in time and/or space under a total power constraint. We consider uniform sampling schemes of …


Energy Shaping Control For Stabilization Of Interconnected Voltage Source Converters In Weakly-Connected Ac Microgrid Systems, Nadia Lenora Carmita Smith Dec 2017

Energy Shaping Control For Stabilization Of Interconnected Voltage Source Converters In Weakly-Connected Ac Microgrid Systems, Nadia Lenora Carmita Smith

Graduate Theses and Dissertations

With the ubiquitous installations of renewable energy resources such as solar and wind, for decentralized power applications across the United States, microgrids are being viewed as an avenue for achieving this goal. Various independent system operators and regional transmission operators such as Southwest Power Pool (SPP), Midcontinent System Operator (MISO), PJM Interconnection and Electric Reliability Council of Texas (ERCOT) manage the transmission and generation systems that host the distributed energy resources (DERs). Voltage source converters typically interconnect the DERs to the utility system and used in High voltage dc (HVDC) systems for transmitting power throughout the United States. A microgrid …


A Low Temperature Co-Fired Ceramic (Ltcc) Interposer Based Three-Dimensional Stacked Wire Bondless Power Module, Atanu Dutta Aug 2017

A Low Temperature Co-Fired Ceramic (Ltcc) Interposer Based Three-Dimensional Stacked Wire Bondless Power Module, Atanu Dutta

Graduate Theses and Dissertations

The objective of this dissertation research is to develop a low temperature co-fired ceramic (LTCC) interposer-based module-level 3-D wire bondless stacked power module. As part of the dissertation work, the 3-D wire bondless stack is designed, simulated, fabricated and characterized. The 3-D wire bondless stack is realized with two stand-alone power modules in a half-bridge configuration. Each stand-alone power module consists of two 1200 V 25 A silicon insulated-gate bipolar transistor (IGBT) devices in parallel and two 1200 V 20 A Schottky barrier diodes (SBD) in an antiparallel configuration. A novel interconnection scheme with conductive clamps and a spring loaded …


Realization Of A High Power Microgrid Based On Voltage Source Converters, Yusi Liu Aug 2017

Realization Of A High Power Microgrid Based On Voltage Source Converters, Yusi Liu

Graduate Theses and Dissertations

Microgrid concepts are gradually becoming more popular because they are expected to interface with renewable energies, increase end users’ reliability and resiliency, and promote seamless integration of distributed generators (DG) and energy storage units [1]. Most units are connected through power electronics interfaces, such as ac-dc, dc-dc, and dc-ac converters. The converter design and control are critical to the stability and efficiency of a microgrid.

A microgrid may operate in either gird connected mode or islanded mode [1]. In terms of stability, the grid connected mode is less challenging compared to the islanded mode of operation due to the nearly …


Optimization Of Miniaturized Resonant Microwave Cavities For Use In Q-Thrusters, Joshua Steven Pennington Aug 2017

Optimization Of Miniaturized Resonant Microwave Cavities For Use In Q-Thrusters, Joshua Steven Pennington

Graduate Theses and Dissertations

A gedankenexperiment was considered to compare a hypothetical thruster that used no reaction mass to propulsion methods currently in use. A brief discussion of previous research work done on closed resonant cavity thrust devices was conducted. Using the previous work as a template, a simulation plan was devised. Computational models of resonant microwave cavities were constructed and investigated using COMSOL software. These COMSOL simulations were verified against known analytical solutions using Matlab software as a computational tool. Multiphysics simulations were created to study the microwave heating environment of the resonant cavities. From the COMSOL study outputs, the electromagnetic field magnitude, …


Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi Aug 2017

Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi

Graduate Theses and Dissertations

Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. …


Statistical Movement Classification Based On Hilbert-Huang Transform, Shanqi Sun Aug 2017

Statistical Movement Classification Based On Hilbert-Huang Transform, Shanqi Sun

Graduate Theses and Dissertations

The goal of this project is to introduce an automatic movement classification technique of

finger movement signals using Hilbert-Huang Transform (HHT). Due to the nonlinear and

nonstationary processing behavior, movement signals are analyzed with the Hilbert-Huang

Transform (HHT). The slope of auto-correlation function and mean of frequency from first

three Intrinsic Mode Functions (IMFs) was used as feature parameters for each category.

Finally, performing support vector machine (SVM) for pattern classification completes clas-

sifying types of finger movement. According to the records of 669 trial samples of two types

of finger movement signals (thumb and pinky), average accuracy is 93.28%. …


Energy From Chemical Reactions: Understanding The Combustion Engine, Tammy Guthrie, Kathy Prophet, Greg Herzig, Cassie Kautzer Jul 2017

Energy From Chemical Reactions: Understanding The Combustion Engine, Tammy Guthrie, Kathy Prophet, Greg Herzig, Cassie Kautzer

Middle School Lesson Plans

Automobiles produce a large amount of heat generated by the burning of gasoline. Burning gasoline is a chemical reaction that causes a phase change. This is called combustible energy. During combustion fuel combines with oxygen to release energy (such as heat, light, sound) along with another product that is often considered waste. Most of the energy produced is not used to power the automobile, but is released as heat. 19.3 pounds of the greenhouse gas, carbon dioxide, is produced from the combustion of 1 gallon of U.S. gasoline according to the U.S. Energy Information Administration.


Introduction To Signal Timing & Traffic Control, Sarah V. Hernandez, Mariah Crew, Karla Diaz-Corro, Taslima Akter Jul 2017

Introduction To Signal Timing & Traffic Control, Sarah V. Hernandez, Mariah Crew, Karla Diaz-Corro, Taslima Akter

Civil Engineering Teaching and Learning

The purpose of these lesson plans is to introduce students to traffic signalization basics. Students will be lead through a series of mini-lectures on traffic control and signalization including a discussion on the limitations and benefits of traffic signalization. The lesson plans compliment a computer simulation “game” in which students act as manual operators for a single up to four by four gridded intersection. Students attempt to control the progression of signals to understand the relationship between signal timing and user delay. Through experimentation with the simulation, students generate a presentation discussing the benefits and drawbacks of signal timing and …


Kinetic Energy Investigation, Mike Jackson Jul 2017

Kinetic Energy Investigation, Mike Jackson

High School Lesson Plans

Students will build a mouse trap powered car that converts elastic potential energy contained in the trap’s spring to linear kinetic energy of the car. The release of this energy results in a net force which leads to linear acceleration. This acceleration can be measured with Vernier Logger Pro®, and using Newton’s Second Law of Motion, the net force can be calculated. Finally, using the concept of work, the final kinetic energy of the car can be calculated. Once students become familiar with the calculation of work and energy, the teacher will challenge the students to modify their cars to …


Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib May 2017

Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib

Graduate Theses and Dissertations

Proper short-circuit protection in dc distribution systems has provided an austere challenge to researchers as the development of commercially-viable equipment providing fast operation, coordination and reliability still continues. The objective of this thesis is to analyze issues associated with short-circuit protection of low-voltage dc (LVDC) distribution systems and propose a short-circuit protection methodology based on solid-state circuit breakers (SSCBs) that provides fault-current limiting (FCL). Simulation results for a simplified notional 1-kVdc distribution system, performed in MATLAB/SIMULINKTM, would be presented to illustrate that SSCB solutions based on reverse-blocking integrated gate-commutated thyristors (RB-IGCT) are feasible for low-voltage dc distribution systems but requires …


Design And Test Of A Gate Driver With Variable Drive And Self-Test Capability Implemented In A Silicon Carbide Cmos Process, Matthew Barlow May 2017

Design And Test Of A Gate Driver With Variable Drive And Self-Test Capability Implemented In A Silicon Carbide Cmos Process, Matthew Barlow

Graduate Theses and Dissertations

Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits.

The primary requirement to ensure rapid switching of power MOSFETs was a gate …


Reduction In Recombination Current Density In Boron Doped Silicon Using Atomic Hydrogen, Matthew Garett Young May 2017

Reduction In Recombination Current Density In Boron Doped Silicon Using Atomic Hydrogen, Matthew Garett Young

Graduate Theses and Dissertations

The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type …


Project Pradio, Trigg T. La Tour May 2017

Project Pradio, Trigg T. La Tour

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper examines the design and manufacturing of a device that allows two or more users to share a wireless audio stream. Effectively, this allows a group of people to listen to the same audio in a synchronized manner. The product was unable to be completed in the allotted time. Regardless, significant progress was made and valuable insight into the circuit board design process was gained.


Design Of A Folded Cascode Operational Amplifier In A 1.2 Micron Silicon-Carbide Cmos Process, Kyle Addington May 2017

Design Of A Folded Cascode Operational Amplifier In A 1.2 Micron Silicon-Carbide Cmos Process, Kyle Addington

Electrical Engineering Undergraduate Honors Theses

This thesis covers the design of a Folded Cascode CMOS Operational Amplifier (Op-Amp) in Raytheon’s 1.2-micron Silicon Carbide (SiC) process. The use of silicon-carbide as a material for integrated circuits (ICs) is gaining popularity due to its ability to function at high temperatures outside the range of typical silicon ICs. The goal of this design was to create an operational amplifier suitable for use in a high temperature analog-to-digital converter application. The amplifier has been designed to have a DC gain of 50dB, a phase margin of 50 degrees, and a bandwidth of 2 MHz. The circuit’s application includes input …


Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire May 2017

Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire

Graduate Theses and Dissertations

There is a constant transformation of the electric grid due to an ongoing interest in the deployment of renewable energy resources and electric microgrid formation. This transformation, though advantageous in many ways, poses great challenges for the energy industry and there must be a constant improvement in modeling, simulation, analysis and control techniques in order to characterize and optimize the system design and operation. In this light, the scope of this thesis is focused on developing a linear model, analyzing the stability and designing an optimal linear quadratic regulator (LQR) for a microgrid system. The microgrid system used is inspired …


Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido May 2017

Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido

Graduate Theses and Dissertations

Dynamic representations of power systems usually result in the order of hundreds or even thousands of buses. Therefore, reduction of these dynamic representations is convenient. Two applications of model order reduction in power systems are discussed in this thesis. First, Krylov subspace-based method is applied to the IEEE-123 Node Test Feeder in the context of distribution-level power systems simulation. Second, a Balanced Truncation-based model reduction is implemented in the 3-Machine 9-Bus system for designing a power system controller in the context of generation- and transmission-level power systems.

First, for the IEEE-123 Node Test Feeder, a two-sided Arnoldi algorithm is proposed …


Optimization Of Graphene Parameters For The Development Of Supercapacitors, Jessica L. Montgomery May 2017

Optimization Of Graphene Parameters For The Development Of Supercapacitors, Jessica L. Montgomery

Mechanical Engineering Undergraduate Honors Theses

In the growing market of evolving electronic devices and the sustainable goals of the energy industry, better sources of energy dense storage devices are needed. Carbon based supercapacitors have attracted the attention of research due to the natural properties of high electrical conductivity, chemical and electrochemical stability, and high surface area. The object of this thesis is to expand upon current knowledge of reduced graphene oxide to better understand the effectiveness of the material as electrode in supercapacitors. This thesis will focus on the physical orientation of supercapacitors to further develop a device that will allow a set of supercapacitors …


Chip-Package Interfacial Stress Analysis And Reliability Implications For Flip-Chip Power Devices, Jonathan Gh Treco May 2017

Chip-Package Interfacial Stress Analysis And Reliability Implications For Flip-Chip Power Devices, Jonathan Gh Treco

Mechanical Engineering Undergraduate Honors Theses

The solder in flip-chip assemblies experience high stress and strain because of thermal mismatch induced deformation. These deformations occur because of the differences of coefficient of thermal expansion between flip-chip assembly materials. The similarly in stress profiles between thermal induced and shear induced stress in solder joints enable the use of die shear testing as a representative technique for relating the max stress the flip-chip can withstand to cyclic thermal fatigue failures. In this work, two electronic device sample preparation types are evaluated: One set of samples are soldered together and other set of samples use epoxy as an adhesive. …


System-Layout-Dependent Thermally Induced Solder Stress & Reliability Implications, Ange C. Iradukunda May 2017

System-Layout-Dependent Thermally Induced Solder Stress & Reliability Implications, Ange C. Iradukunda

Mechanical Engineering Undergraduate Honors Theses

Electronic flip chip assemblies consist of dissimilar component materials, which exhibit different CTE. Under thermal cyclic operating conditions, this CTE mismatch produces interfacial and interconnect stresses, which are highly dependent on system layout. In this paper, sensitivity analyses are performed using ANSYS FEA to establish how the proximity and arrangement of neighboring devices affect interconnect stress. Flip chip alignment modes ranging from edge-to-edge to corner-to-corner are studied. Results of these FEA studies, demonstrated that closely packing devices together has the effect of making them act as one. This results in a significant increase in the thermomechanical stresses induced on peripheral …


Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta May 2017

Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta

Mechanical Engineering Undergraduate Honors Theses

Graphene is known to be a key material for improving the performance of hydrogen sensors. High electrical conductivity, maximum possible surface area with respect to volume, and high carrier mobility are a few of the properties that make graphene ideal for hydrogen sensing applications. The problem with utilizing graphene is the difficulty in depositing uniform, thin layers onto substrate surfaces. This study examines a new method of optimizing graphene deposition by utilizing an airbrush to deposit both graphene oxide (GO) and reduced graphene oxide (rGO) onto glass substrates. The number of depositions were varied among samples to study the effect …


A Manufacturer Design Kit For Multi-Chip Power Module Layout Synthesis, Jonathan Main May 2017

A Manufacturer Design Kit For Multi-Chip Power Module Layout Synthesis, Jonathan Main

Electrical Engineering Undergraduate Honors Theses

The development of Multi-Chip Power Modules (MCPMs) has been a key factor in recent advancements in power electronics technologies. MCPMs achieve higher power density by combining multiple power semiconductor devices into one package. The work detailed in this thesis is part of an ongoing project to develop a computer-aided design software tool known as PowerSynth for MCPM layout synthesis and optimization. This thesis focuses on the definition and design of a Manufacturer Design Kit (MDK) for PowerSynth, which enables the designer to design an MCPM for a manufacturer’s fabrication process.

The MDK is comprised of a layer stack and technology …