Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Entire DC Network

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam Dec 2023

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam

Electronic Theses and Dissertations

Advancements in microscale actuating technologies has substantially expanded the possibilities of interacting with the surrounding environment. Microstructures that deflect in response to mechanical forces are one of the largest application areas of microelectromechanical systems (MEMS). MEMS devices, functioning as sensors, actuators, and support structures, find applications in inertial sensors, pressure sensors, chemical sensors, and robotics, among others. Driven by the critical role of catalytic membrane reactors, this dissertation aims to evaluate enzyme activity on polymeric membranes and explore how fabrication methods from the field of Electrical and Computer Engineering (ECE) can incorporate sensing and actuation into these porous surfaces. Toward …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh Jun 2021

Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh

Theses and Dissertations

Piezoelectric contour mode resonator technology has the unique advantage of combining low motional resistance with the ability to define multiple frequencies on the same substrate. Contour mode resonators can be mechanically coupled together to form robust band-pass filters for the next generation of GPS satellites with extreme size reduction compared to electrically coupled filters. Piezoelectric zinc oxide (ZnO) contour mode resonators have the potential for monolithic integration with current ZnO transistor further reducing size, power consumption, and cost of filter modules. Barium strontium titanate (BST) contour mode resonators have incredible frequency tunability due to the fundamental nature of the thin …


Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry Aug 2020

Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for silicon microneedle arrays to extract dermal interstitial fluid (ISF) from human skin. ISF is a cell- free, living tissue medium that is known to contain many of the same, clinical biomarkers of general health, stress response and immune status as in blood. However, a significant barrier to adoption of ISF as a diagnostic matrix is the lack of a rapid, minimally invasive method of access and collection for analysis. Microfabricated chips containing arrays of microneedles that can rapidly and painlessly access and collect dermal ISF for …


Microrobots For Wafer Scale Microfactory: Design Fabrication Integration And Control., Ruoshi Zhang May 2020

Microrobots For Wafer Scale Microfactory: Design Fabrication Integration And Control., Ruoshi Zhang

Electronic Theses and Dissertations

Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling …


Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta Jan 2020

Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta

Open Access Theses & Dissertations

Over the recent years there has been an increasing demand of better performing electronics. However, as the semiconductor industry keeps on improving and scaling the technology to the nanometer regime, the passive power density has overcome the overall power consumption of transistors. The inability to reduce the power alongside the scaling of transistors has led the scientific community in the search for alternatives or different solutions to overcome this power crisis. The use of two-dimensional Transition-Metal Dichalcogenides (TMDCS) and Micro-Electro-Mechanical System (MEMS) actuators, in conjunction, has been proposed as an alternative solution [1]. Recent studies of TMDCS have shown a …


Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications, Zhiguo Zhao Jan 2020

Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications, Zhiguo Zhao

Wayne State University Dissertations

MEMS (Micro Electro Mechanical System) based flexible devices have been studied for decades, and they are rapidly being incorporated into modern society in various forms such as flexible electronics and wearable devices. Especially in neuroscience, flexible interfaces provide tremendous possibilities and opportunities to produce reliable, scalable and biocompatible instruments for better exploring neurotransmission and neurological disorders. Of all the types of biomedical instruments such as electroencephalography (EEG) and electrocorticography (ECoG), MEMS-based needle-shape probes have been actively studied in recent years due to their better spatial resolution, selectivity, and sensitivity in chronical invasive physiology monitoring. In order to address the inherent …


Conductivity Modulation In Strained 2d Transition- Metal- Dichalcogenides Via Micro- Electro- Mechanical Actuation, Aldo Ivan Vidaña Jan 2019

Conductivity Modulation In Strained 2d Transition- Metal- Dichalcogenides Via Micro- Electro- Mechanical Actuation, Aldo Ivan Vidaña

Open Access Theses & Dissertations

In this thesis, strain-induced conductivity modulation in bi-layer molybdenum disulfide (MoS2) flakes is experimentally investigated and modeled. Uniaxial tensile strain in the MoS2 flakes is achieved using a micro-electro-mechanical (MEM) actuator. Conductivity ratios up to 400 are demonstrated. Theoretical predictions of conductivity versus applied voltage in the MEMS-MoS2 device match experimental data reasonably well using only the effective width of the TMDC flakes as the sole fitting parameter. The amount of strain induced in the MoS2 flakes was determined to be as high as 2.7% for one flake using the model fitted to the experiment data. The switching energy required …


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers at …


Applications Of Polarized Metallic Nanostructures., Jasmin Beharic Aug 2017

Applications Of Polarized Metallic Nanostructures., Jasmin Beharic

Electronic Theses and Dissertations

Gold nanostructures exhibit technologically useful properties when they are polarized in an electric field. In two projects we explore instances where the polarized metal can be used in real world applications. The first project involves gold nanoparticles (GNP) for use in light actuated microelectromechanical systems (MEMS) applications. Although the GNPs were originally designed for volumetric heating in biomedical applications, we treat them as a thin film coating, opening the door for these particles to be used in MEMS applications. This work characterizes the thermal properties of gold nanoparticles on surfaces for spatially-targeted thermal actuation in MEMS systems. The second project …


Design, Modeling, Fabrication, And Testing Of A Multistage Micro Gas Compressor With Piezoelectric Unimorph Diaphragm And Passive Microvalves For Microcooling Applications, Shawn Thanhson Le Jan 2017

Design, Modeling, Fabrication, And Testing Of A Multistage Micro Gas Compressor With Piezoelectric Unimorph Diaphragm And Passive Microvalves For Microcooling Applications, Shawn Thanhson Le

Doctoral Dissertations

This dissertation investigates the development of a multistage micro gas compressor utilizing multiple pump stages cascaded in series to increase the pressure rise with passive microvalves and piezoelectric unimorph diaphragms. This research was conducted through modeling, simulation, design, and fabrication of the microcompressor and its components. A single-stage and a two-stage microcompressor were developed to demonstrate and compare the performance and effectiveness of using a cascaded multistage design.

Steady fluid flow through static microvalves structure was studied to gain insight on its gas flow dynamics and characteristics. Transient analysis combined with the structure's interaction was investigated with an analytical model …


Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn Dec 2016

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn

Graduate Theses and Dissertations

Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly …


Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake Dec 2016

Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake

Electronic Theses and Dissertations

Bistable elements are beginning to appear in the field of MEMS as they allow engineers to design sensors and actuators which require no electrical power and possess mechanical memory. This research focuses on the development of novel strategies and techniques for fabricating MEMS bistable structures to serve as no electrical power thermal actuators. Two parallel strategies were explored for the design and fabrication of the critical bistable element. Both strategies involved an extensive material study on candidate thin film materials to determine their temperature coefficient of expansion and as-deposited internal stress properties. Materials investigated included titanium tungsten, Invar, silicon nitride …


Design And Characterization Of A Low Cost Mems Imu Cluster For Precision Navigation, Daniel R. Greenheck Jul 2015

Design And Characterization Of A Low Cost Mems Imu Cluster For Precision Navigation, Daniel R. Greenheck

Master's Theses (2009 -)

The fast paced development of micro-electromechanical systems (MEMS) technology in recent years has resulted in the availability of low cost gyroscopes and accelerometers in commercial markets. These sensors can be integrated into a single device known as an inertial measurement unit (IMU). An IMU is capable of tracking and navigating a vehicle for a short period of time in the absence of external position and attitude updates. The precision of the manufacturing techniques used to fabricate commercial MEMS sensors as well as their mechanical nature result in noise and errors that limit their performance. It has been mathematically shown that …


Modeling Of The Response Of A Memcapacitor For An Impulse, Step, Ramp, And Sinusiodal Inputs, Ghassan Khalil Kachmar Jan 2015

Modeling Of The Response Of A Memcapacitor For An Impulse, Step, Ramp, And Sinusiodal Inputs, Ghassan Khalil Kachmar

Open Access Theses & Dissertations

Micro-Electro-Mechanical Systems, or MEMS, is a technology of very small scale devices. The dimensions of MEMS can vary from below one micron to several millimeters. MEMS have some mechanical functionalities such as the moving plate of a parallel plate capacitor (memcapacitor). MEMS researchers and developers have demonstrated an extremely large number of microsensors for almost every possible sensing modality including temperature, pressure, inertial forces, and chemical species. The equation of motion of the moving plate of a memcapacitor is governed by a non-linear differential equation with no known exact solution. Most research into determining the theoretical response of a memcapacitor …


Finite Element Analysis Simulations Of Micro And Nano-Electromechanical Sensors For Design Optimization, Nicholas Frank Deroller Dec 2014

Finite Element Analysis Simulations Of Micro And Nano-Electromechanical Sensors For Design Optimization, Nicholas Frank Deroller

Theses and Dissertations

Micro and Nano-electromechanical sensors (MEMS and NEMS) provide a means of actively sensing minute changes in the surrounding environment. Small changes in temperature, momentum, and strain may be sensed in passive modes while greater sensing possibilities exist in active modes. Theoretical femto-gram resolution mass detection and heated element sensing methods may be used while volatile organic compound (VOC) sensing may be achieved when combined with a functionalization layer or device heating. These devices offer a great reduction in cost and offer increased mobility by allowing a "lab-on-chip" solution for the prospective user while also greatly reducing the amount of energy …


Piezotransistive Iii-V Nitride Microcantilever Based Mems/Nems Sensor For Photoacoustic Spectroscopy Of Chemicals, Abdul Hafiz Ibne Talukdar Dec 2014

Piezotransistive Iii-V Nitride Microcantilever Based Mems/Nems Sensor For Photoacoustic Spectroscopy Of Chemicals, Abdul Hafiz Ibne Talukdar

Theses and Dissertations

Microcantilevers are highly attractive as transducers for detecting chemicals, explosives, and biological molecules due to their high sensitivity, micro-scale dimensions, and low power consumption. Though optical transduction of the mechanical movement of the microcantilevers into an electrical signal is widely practiced, there is a continuous thrust to develop alternative transduction methods that are more conducive to the development of compact miniaturized sensors. Piezoelectric and piezoresistive transduction methods are two of the most popular ones that have been utilized to develop miniaturized sensor systems. Piezoelectric cantilevers, which are commonly made of PZT film, have demonstrated very high sensitivity; however, they suffer …


Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower Oct 2014

Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower

Doctoral Dissertations

Quartz crystal resonators have been the most commonly used timing devices to date. Today's timing market requires devices to be as small as possible and consume smaller amounts of energy. Because of the market demand, many startup companies have formed to develop silicon resonators as timing devices. Silicon resonators have poor noise and temperature performance (due to its linear temperature versus frequency coefficient). At the moment the only advantage that silicon resonators have over quartz crystal resonators is a small form factor. The photolithography processing method currently being used in industry is a very tedious task, requiring multiple etching steps …


Development Of Electroplated-Ni Structured Micromechanical Resonators For Rf Application, Mian Wei Sep 2014

Development Of Electroplated-Ni Structured Micromechanical Resonators For Rf Application, Mian Wei

USF Tampa Graduate Theses and Dissertations

On-chip vibrating MEMS resonators with high frequency-Q product on par with that of the off-chip quartz crystals have attracted lots of attention from both academia and industry for applications on sensing, signal processing, and wireless communication. Up to now, several approaches for monolithic integration of MEMS and transistors have been demonstrated. Vibrating micromechanical disk resonators which utilize electroplated nickel as the structural material along with either a solid-gap high-k dielectric capacitive transducer or a piezoelectric transducer have great potential to offer unprecedented performance and capability of seamless integration with integrated circuits.

Despite the frequency drift problems encountered in early attempts …


Flexible Mems: A Novel Technology To Fabricate Flexible Sensors And Electronics, Hongen Tu Jan 2014

Flexible Mems: A Novel Technology To Fabricate Flexible Sensors And Electronics, Hongen Tu

Wayne State University Dissertations

This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices.

MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon …


Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen Mar 2013

Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen

Theses and Dissertations

This dissertation presents advances in the development of planar electrode ion traps. An ion trap is a device that can be used in mass analysis applications. Electrode surfaces create an electric field profile that trap ionized molecules of an analyte. The electric fields can then be manipulated to mass-selectively eject ions out of the trap into a detector. The resulting data can be used to analyze molecular structure and composition of an unknown compound. Conventional ion traps require machined electrode surfaces to form the electric trapping field. This class of electrode presents significant obstacles when attempting to miniaturize ion traps …


Integration Of Memristors With Mems For Dynamic Displacement Control, Sergio Fabian Almeida Loya Jan 2013

Integration Of Memristors With Mems For Dynamic Displacement Control, Sergio Fabian Almeida Loya

Open Access Theses & Dissertations

In recent years the demand for high-speed, lower power consumption and large-capacity non-volatile memories has increased. Promisingly the memristor can be used due to its special characteristic of having memory through resistance change. The memristor behavior is not limited to digital applications but it can be used in analog application as well including: memristors in chaotic circuits, amoeba's learning, neural synaptic emulation, reprogrammable and reconfigurable circuits, and for neuromorphic computers. On the other hand Micro Electro Mechanical Systems (MEMS) are small scale structures that can interact with the physical world due to their mechanical properties. These devices are widely used …


Piezoelectric-Based, Self-Sustaining Artificial Cochlea, Jared Evans Jan 2013

Piezoelectric-Based, Self-Sustaining Artificial Cochlea, Jared Evans

Browse all Theses and Dissertations

Hearing loss is a prevalent issue, affecting all ages in innumerable occupations. Cochlear implants are one solution to sensorineural hearing complications; and though they are commonly used, the electronic devices have limitations in power consumption and external equipment. Piezoelectric films emulate the relationship between the basilar membrane and inner hair cell structures of the human cochlear epithelium, inducing a potential difference in response to sound pressure. Through proper MEMS fabrication and material selection, an artificial cochlear can be developed utilizing piezoelectrics, which is self-sustainable and functions naturally with the mechanisms of the human ear. This research investigates the feasibility of …


Development Of Mems-Based Corrosion Sensor, Feng Pan Dec 2012

Development Of Mems-Based Corrosion Sensor, Feng Pan

Graduate Theses and Dissertations

This research is to develop a MEMS-based corrosion sensor, which is used for monitoring uniform, galvanic corrosion occurring in infrastructures such as buildings, bridges. The corrosion sensor is made up of the composite of micro/nano metal particles with elastomers. The mechanism of corrosion sensor is based on the mass transport of corrosive species through the sensor matrix. When the metal particles in the matrix corrode, the electrical resistivity of the material increases due to increasing particle resistances or reduction of conducting pathways. The corrosion rate can be monitored by detecting the resistivity change in sensing elements. The life span of …


Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo Jun 2012

Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo

Master's Theses

ABSTRACT

Fabrication and Characterization of Torsional Micro-Hinge Structures

Mike Marrujo

There are many electronic devices that operate on the micrometer-scale such as Digital Micro-Mirror Devices (DMD). Micro actuators are a common type of DMD that employ a diaphragm supported by torsional hinges, which deform during actuation and are critical for the devices to have high stability and reliability. The stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. Electrostatically driven micro actuators observe to have a fully recoverable non-linear viscoelastic response. The device consists of a micro-hinge which is suspended by two …


3-Dimensional Intracortical Neural Interface For The Study Of Epilepsy, Jessin Koshy John Jan 2012

3-Dimensional Intracortical Neural Interface For The Study Of Epilepsy, Jessin Koshy John

Wayne State University Dissertations

Epilepsy is a chronic disease characterized by recurrent, unprovoked seizures, where seizures are described as storms of uncontrollable neuro-electrical activity within the brain. Seizures are therefore identified by observation of electrical spiking observed through electrical contacts (electrodes) placed on the scalp or the cortex above the epileptic regions. Current epilepsy research is identifying several specific molecular markers that appear at specific layers of the epilepsy-affected cortex. However, technology is limited in allowing for live observation of electrical spiking across these layers. The underlying hypothesis of this project is that electrical interictal activity is generated in a layer- and lateral-specific pattern. …


Low Loss Vhf And Uhf Filters For Wireless Communications Based On Piezoelectrically-Transduced Micromechanical Resonators, Julio Mario Dewdney Jan 2012

Low Loss Vhf And Uhf Filters For Wireless Communications Based On Piezoelectrically-Transduced Micromechanical Resonators, Julio Mario Dewdney

USF Tampa Graduate Theses and Dissertations

For the past decade, a great deal of research has been focused towards developing a viable on-chip solution to replace the current state-of-the-art VHF and UHF filters based on SAW and FBAR technologies. Although filters based on SAW and FBAR devices are capable of fulfilling the basic requirements needed for IF and RF bandpass filtering and reference signal generation, an alternative solution that can enable the next generation of multi-frequency and multi-mode transceivers while enabling size and price reduction by allowing the manufacturing of single-chip monolithic RF transceivers is highly desired. In response to these new needs, piezoelectrically-transduced micromechanical filters …


Modeling And Development Of A Mems Device For Pyroelectric Energy Scavenging, Salwa Mostafa Aug 2011

Modeling And Development Of A Mems Device For Pyroelectric Energy Scavenging, Salwa Mostafa

Doctoral Dissertations

As the world faces an energy crisis with depleting fossil fuel reserves, alternate energy sources are being researched ever more seriously. In addition to renewable energy sources, energy recycling and energy scavenging technologies are also gaining importance. Technologies are being developed to scavenge energy from ambient sources such as vibration, radio frequency and low grade waste heat, etc. Waste heat is the most common form of wasted energy and is the greatest potential source of energy scavenging.

Pyroelectricity is the property of some materials to change the surface charge distribution with the change in temperature. These materials produce current as …


Development Of A Compact Optical System For A Forward-Looking Endoscope, Anandi Kalyan Dutta Jan 2010

Development Of A Compact Optical System For A Forward-Looking Endoscope, Anandi Kalyan Dutta

LSU Master's Theses

ABSTRACT Optical Coherence Tomography has been effectively used for endoscopy in many previous studies. In this work, a 2 mm diameter forward-looking endoscope is developed with the help of MEMS technology and Optical Coherence Technology (OCT) to obtain in-vivo cross-sectional images of tissues or body cavities. The design consists of a GRIN lens, optical fiber and MEMS chip that are placed in line to fulfill the aim of achieving a 2 mm diameter probe. A standard assembly process has been established for the probe. An anisotropic etching was performed on the sample chip to create the V-groove for carrying the …


Modeling And Feedback Control Of A Mems Electrostatic Actuator, Jason Edwards Jan 2009

Modeling And Feedback Control Of A Mems Electrostatic Actuator, Jason Edwards

ETD Archive

This thesis describes the mathematical modeling and closed-loop voltage control of a MEMS electrostatic actuator. The control goal is to extend the travel range of the actuator beyond the open-loop pull-in limit of one third of the initial gap. Three controller designs are presented to reach the control goal. The first controller design utilizes a regular fourth order Active Disturbance Rejection Controller (ADRC) and is able to achieve 97 of the maximum travel range. The second design also uses a fourth order ADRC, while additional modeling information is included in an Extended State Observer (ESO), which is part of the …