Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Series

2008

Adaptive Control

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Joint Adaptive Distributed Rate And Power Control For Wireless Networks, James W. Fonda, Jagannathan Sarangapani, Steve Eugene Watkins Oct 2008

Joint Adaptive Distributed Rate And Power Control For Wireless Networks, James W. Fonda, Jagannathan Sarangapani, Steve Eugene Watkins

Electrical and Computer Engineering Faculty Research & Creative Works

A novel adaptive distributed rate and power control (ADRPC) protocol is introduced for wireless networks. The proposed controller contrasts from others by providing nonlinear compensation to the problem of transmission power and bit-rate adaptation. The protocol provides control of both signal-to-interference ratio (SIR) and quality-of-service (QoS) support to bit-rate adaptation. Bit-rate adaptation is performed by local estimation of congestion levels, rendering little packet overhead, using Lyapunov based adaptive control methods. Performance of the proposed control scheme is shown through analytical proof and simulation examples.


Implementation Of Neuroidentifiers Trained By Pso On A Plc Platform For A Multimachine Power System, Curtis Alan Parrott, Ganesh K. Venayagamoorthy Sep 2008

Implementation Of Neuroidentifiers Trained By Pso On A Plc Platform For A Multimachine Power System, Curtis Alan Parrott, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

Power systems are nonlinear with fast changing dynamics. In order to design a nonlinear adaptive controller for damping power system oscillations, it becomes necessary to identify the dynamics of the system. This paper demonstrates the implementation of a neural network based system identifier, referred to as a neuroidentifier, on a programmable logic controller (PLC) platform. Two separate neuroidentifiers are trained using the particle swarm optimization (PSO) algorithm to identify the dynamics in a two-area four machine power system, one neuroidentifier for Area 1 and the other for Area 2. The power system is simulated in real time on the Real …


Nsf Career: Scalable Learning And Adaptation With Intelligent Techniques And Neural Networks For Reconfiguration And Survivability Of Complex Systems, Ganesh K. Venayagamoorthy Jul 2008

Nsf Career: Scalable Learning And Adaptation With Intelligent Techniques And Neural Networks For Reconfiguration And Survivability Of Complex Systems, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

The NSF CAREER program is a premier program that emphasizes the importance the foundation places on the early development of academic careers solely dedicated to stimulating the discovery process in which the excitement of research enriched by inspired teaching and enthusiastic learning. This paper describes the research and education experiences gained by the principal investigator and his research collaborators and students as a result of a NSF CAREER proposal been awarded by the power, control and adaptive networks (PCAN) program of the electrical, communications and cyber systems division, effective June 1, 2004. In addition, suggestions on writing a winning NSF …


Artificial Immune System Based Dstatcom Control For An Electric Ship Power System, Pinaki Mitra, Ganesh K. Venayagamoorthy Jun 2008

Artificial Immune System Based Dstatcom Control For An Electric Ship Power System, Pinaki Mitra, Ganesh K. Venayagamoorthy

Electrical and Computer Engineering Faculty Research & Creative Works

Distribution static compensator (DSTATCOM) is a shunt compensation device which is generally used to solve power quality problems in distribution systems. In an all-electric ship power system, these power quality problems mainly arise due to the pulsed loads, which causes the degradation of the entire system performance. This paper presents the application of DSTATCOM to improve the power quality in a ship power system during and after pulsed loads. The control strategy of the DSTATCOM plays an important role in maintaining the voltage at the point of common coupling. A novel adaptive control strategy for the DSTATCOM based on artificial …


Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Mar 2008

Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines operating at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. Past literature suggests that operating an engine under such lean conditions can significantly reduce NO emissions by as much as 30% and improve fuel efficiency by as much as 5%-10%. At lean conditions, the heat release per engine cycle is not close to constant, as it is when these engines operate under stoichiometric conditions where the equivalence ratio is 1.0. A neural network controller employing output feedback has shown ability in simulation to reduce the nonlinear cyclic dispersion observed under …