Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology

PDF

FIU Electronic Theses and Dissertations

Biogeochemistry

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Quantifying How Coastal Flooding And Stormwater Runoff Drive Spatiotemporal Variability In Carbon And Nutrient Processing In Urban Aquatic Ecosystems, Matthew A. Smith Oct 2021

Quantifying How Coastal Flooding And Stormwater Runoff Drive Spatiotemporal Variability In Carbon And Nutrient Processing In Urban Aquatic Ecosystems, Matthew A. Smith

FIU Electronic Theses and Dissertations

Coastal river networks alter the transport and transformation of dissolved organic carbon (DOC) and dissolved organic matter (DOM), which can vary in concentration and composition across spatiotemporal scales. Given climate-induced shifts in rainfall and tidal variation in low-lying coastal regions, there is an increasing need to quantify effects of flooding on biogeochemical cycling. Specifically, urban flooding is becoming increasingly common due to biophysical alterations to hydrology from urbanization and climate change. Urban ecosystems have been characterized as having a distinct biogeochemistry compared to other systems, largely due to increased frequency and magnitude of riverine and coastal flooding. Consequently, the role …


Drivers And Mechanisms Of Peat Collapse In Coastal Wetlands, Benjamin J. Wilson Mar 2018

Drivers And Mechanisms Of Peat Collapse In Coastal Wetlands, Benjamin J. Wilson

FIU Electronic Theses and Dissertations

Coastal wetlands store immense amounts of carbon (C) in vegetation and sediments, but this store of C is under threat from climate change. Accelerated sea level rise (SLR), which leads to saltwater intrusion, and more frequent periods of droughts will both impact biogeochemical cycling in wetlands. Coastal peat marshes are especially susceptible to saltwater intrusion and changes in water depth, but little is known about how exposure to salinity affects organic matter accumulation and peat stability. I investigated freshwater and brackish marsh responses to elevated salinity, greater inundation, drought, and increased nutrient loading. Elevated salinity pulses in a brackish marsh …