Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology

PDF

University of New Hampshire

2013

Nutrient limitation

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Mechanisms Of Nutrient Limitation And Nutrient Acquisition In Managed And Unmanaged Forest Ecosystems, Matthew A. Vadeboncoeur May 2013

Mechanisms Of Nutrient Limitation And Nutrient Acquisition In Managed And Unmanaged Forest Ecosystems, Matthew A. Vadeboncoeur

Doctoral Dissertations

Understanding the interactions between global change, human and natural disturbances, and other factors on biogeochemical processes in forests is necessary to ensure the sustainability of forest management. Here I report the results of several investigations into nutrient acquisition processes in the forests of New Hampshire. I begin with a meta-analysis of fertilization studies showing that phosphorus (P) and calcium (Ca) as well as nitrogen (N) may limit primary production in deciduous forests of the region. Because these limiting nutrients are all removed from the ecosystem when trees are harvested, I compared nutrient budgets under a range of harvesting scenarios with …


Recovery From Disturbance Requires Resynchronization Of Ecosystem Nutrient Cycles, Edward B. Rastetter, Ruth D. Yanai, R Quinn Thomas, Matthew A. Vadeboncoeur, Timothy J. Fahey, Melany C. Fisk, Bonnie L. Kwiatkowski, Steven P. Hamburg Apr 2013

Recovery From Disturbance Requires Resynchronization Of Ecosystem Nutrient Cycles, Edward B. Rastetter, Ruth D. Yanai, R Quinn Thomas, Matthew A. Vadeboncoeur, Timothy J. Fahey, Melany C. Fisk, Bonnie L. Kwiatkowski, Steven P. Hamburg

Earth Systems Research Center

Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following …