Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology

PDF

Old Dominion University

Biological Sciences Faculty Publications

Series

Genetics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Editorial: Advances In The Biology And Conservation Of Marine Turtles, Sara M. Maxwell, Annette C. Broderick, Peter H. Dutton, Sabrina Fossette-Halot, Mariana M.P.B. Fuentes, Richard D. Reina Jan 2019

Editorial: Advances In The Biology And Conservation Of Marine Turtles, Sara M. Maxwell, Annette C. Broderick, Peter H. Dutton, Sabrina Fossette-Halot, Mariana M.P.B. Fuentes, Richard D. Reina

Biological Sciences Faculty Publications

(First Paragraph) Marine turtles have been the subject of research over many decades, inspired by their unique life history and necessitated by their declining populations from a suite of human impacts including direct harvest, bycatch in marine fisheries, pollution, and climate change. Despite this, much about marine turtle biology has remained a mystery (Godley et al., 2008; Rees et al., 2016; Wildermann et al., 2018), but the rate of scientific discovery is increasing rapidly. As research techniques and conservation practices expand, the marine turtle research community has kept abreast of these developments and their application to marine turtles. In this …


Gain-Of-Function Experiments With Bacteriophage Lambda Uncover Residues Under Diversifying Selection In Nature, Rohan Maddamsetti, Daniel T. Johnson, Stephanie J. Spielman, Katherine L. Petrie, Debora S. Marks, Justin R. Meyer Jan 2018

Gain-Of-Function Experiments With Bacteriophage Lambda Uncover Residues Under Diversifying Selection In Nature, Rohan Maddamsetti, Daniel T. Johnson, Stephanie J. Spielman, Katherine L. Petrie, Debora S. Marks, Justin R. Meyer

Biological Sciences Faculty Publications

Viral gain-of-function mutations frequently evolve during laboratory experiments. Whether the specific mutations that evolve in the lab also evolve in nature and whether they have the same impact on evolution in the real world is unknown. We studied a model virus, bacteriophage λ, that repeatedly evolves to exploit a new host receptor under typical laboratory conditions. Here, we demonstrate that two residues of λ’s J protein are required for the new function. In natural λ variants, these amino acid sites are highly diverse and evolve at high rates. Insertions and deletions at these locations are associated with phylogenetic patterns indicative …