Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Dynamic Systems

PDF

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 39

Full-Text Articles in Entire DC Network

Bifurcation Analysis For Prey-Predator Model With Holling Type Iii Functional Response Incorporating Prey Refuge, Lazaar Oussama, Mustapha Serhani Dec 2019

Bifurcation Analysis For Prey-Predator Model With Holling Type Iii Functional Response Incorporating Prey Refuge, Lazaar Oussama, Mustapha Serhani

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we carried out the bifurcation analysis for a Lotka-Volterra prey-predator model with Holling type III functional response incorporating prey refuge protecting a constant proportion of the preys. We study the local bifurcation considering the refuge constant as a parameter. From the center manifold equation, we establish a transcritical bifurcation for the boundary equilibrium. In addition, we prove the occurrence of Hopf bifurcation for the homogeneous equilibrium. Moreover, we give the radius and period of the unique limit cycle for our system


Fluids In Music: The Mathematics Of Pan’S Flutes, Bogdan Nita, Sajan Ramanathan Oct 2019

Fluids In Music: The Mathematics Of Pan’S Flutes, Bogdan Nita, Sajan Ramanathan

Department of Mathematics Facuty Scholarship and Creative Works

We discuss the mathematics behind the Pan’s flute. We analyze how the sound is created, the relationship between the notes that the pipes produce, their frequencies and the length of the pipes. We find an equation which models the curve that appears at the bottom of any Pan’s flute due to the different pipe lengths.


Evaluation Of Age- And Risk-Based Mass Drug Administration Policies To Control Soil-Transmitted Helminths: A Mathematical Modeling Study Of Ghana, Mugdha Thakur Oct 2019

Evaluation Of Age- And Risk-Based Mass Drug Administration Policies To Control Soil-Transmitted Helminths: A Mathematical Modeling Study Of Ghana, Mugdha Thakur

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Simulating Bacterial Growth, Competition, And Resistance With Agent-Based Models And Laboratory Experiments, Anne E. Yust, Davida S. Smyth Oct 2019

Simulating Bacterial Growth, Competition, And Resistance With Agent-Based Models And Laboratory Experiments, Anne E. Yust, Davida S. Smyth

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Analog Implementation Of The Hodgkin-Huxley Model Neuron, Zachary D. Mobille, George H. Rutherford, Jordan Brandt-Trainer, Rosangela Follmann, Epaminondas Rosa Oct 2019

Analog Implementation Of The Hodgkin-Huxley Model Neuron, Zachary D. Mobille, George H. Rutherford, Jordan Brandt-Trainer, Rosangela Follmann, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Period Drift In A Neutrally Stable Stochastic Oscillator, Kevin Sanft Oct 2019

Period Drift In A Neutrally Stable Stochastic Oscillator, Kevin Sanft

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Transient Dynamics Of Infection Transmission In An Intensive Care Unit, Christopher Short, Matthew S. Mietchen, Eric T. Lofgren Oct 2019

Transient Dynamics Of Infection Transmission In An Intensive Care Unit, Christopher Short, Matthew S. Mietchen, Eric T. Lofgren

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Analysis Of An Agent-Based Model For Integrated Pest Management With Periodic Control Strategies, Timothy Comar Oct 2019

Analysis Of An Agent-Based Model For Integrated Pest Management With Periodic Control Strategies, Timothy Comar

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


A Study On Discrete And Discrete Fractional Pharmacokinetics-Pharmacodynamics Models For Tumor Growth And Anti-Cancer Effects, Ferhan Atici Oct 2019

A Study On Discrete And Discrete Fractional Pharmacokinetics-Pharmacodynamics Models For Tumor Growth And Anti-Cancer Effects, Ferhan Atici

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Discrete-Time Disease Model With Population Motion Under The Kolmogorov Equation View And Application, Ye Li Oct 2019

Discrete-Time Disease Model With Population Motion Under The Kolmogorov Equation View And Application, Ye Li

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Mathematical Modeling, Analysis, Simulation Of The Opioid Crisis With Prescription And Social Drug Addiction Models, Kirthi Kumar Oct 2019

Mathematical Modeling, Analysis, Simulation Of The Opioid Crisis With Prescription And Social Drug Addiction Models, Kirthi Kumar

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Cure: A Mathematical Model Of Suicide Risk Among Us Veterans, Anna Singley, Ruth Olson, Sydney Adams, Hannah Callender Highlander Oct 2019

Cure: A Mathematical Model Of Suicide Risk Among Us Veterans, Anna Singley, Ruth Olson, Sydney Adams, Hannah Callender Highlander

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Ganikhodjaev's Conjecture On Mean Ergodicity Of Quadratic Stochastic Operators, Mansoor Saburov, Khikmat Saburov Aug 2019

Ganikhodjaev's Conjecture On Mean Ergodicity Of Quadratic Stochastic Operators, Mansoor Saburov, Khikmat Saburov

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

A linear stochastic (Markov) operator is a positive linear contraction which preserves the simplex. A quadratic stochastic (nonlinear Markov) operator is a positive symmetric bilinear operator which preserves the simplex. The ergodic theory studies the long term average behavior of systems evolving in time. The classical mean ergodic theorem asserts that the arithmetic average of the linear stochastic operator always converges to some linear stochastic operator. While studying the evolution of population system, S.Ulam conjectured the mean ergodicity of quadratic stochastic operators. However, M.Zakharevich showed that Ulam's conjecture is false in general. Later, N.Ganikhodjaev and D.Zanin have generalized Zakharevich's example …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Sarymsakov Cubic Stochastic Matrices, Mansoor Saburov, Khikmat Saburov Jun 2019

Sarymsakov Cubic Stochastic Matrices, Mansoor Saburov, Khikmat Saburov

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

The class of Sarymsakov square stochastic matrices is the largest subset of the set of stochastic, indecomposable, aperiodic (SIA) matrices that is closed under matrix multiplication and any infinitely long left-product of the elements from any of its compact subsets converges to a rank-one (stable) matrix. In this paper, we introduce a new class of the so-called Sarymsakov cubic stochastic matrices and study the consensus problem in the multi-agent system in which an opinion sharing dynamics is presented by quadratic stochastic operators associated with Sarymsakov cubic stochastic matrices.


Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello Jun 2019

Maximizing And Modeling Malonyl-Coa Production In Escherichia Coli, Tatiana Thompson Silveira Mello

LSU Master's Theses

In E. coli, fatty acid synthesis is catalyzed by the enzyme acetyl-CoA carboxylase (ACC), which converts acetyl-CoA into malonyl-CoA. Malonyl-CoA is a major building block for numerous of bioproducts. Multiple parameters regulate the homeostatic cellular concentration of malonyl-CoA, keeping it at a very low level. Understanding how these parameters affect the bacterial production of malonyl-CoA is fundamental to maximizing it and its bioproducts. To this end, competing pathways consuming malonyl-CoA can be eliminated, and optimal nutritional and environmental conditions can be provided to the fermentation broth. Most previous studies utilized genetic modifications, expensive consumables, and high-cost quantification methods, making …


Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _ Jun 2019

Two Dimensional Mathematical Study Of Flow Dynamics Through Emphysemic Lung, Jyoti Kori, Pratibha _

Applications and Applied Mathematics: An International Journal (AAM)

There are various lung diseases, such as chronic obstructive pulmonary disease, asthma, fibrosis, emphysema etc., occurred due to deposition of different shape and size particles. Among them we focused on flow dynamics of viscous air through an emphysemic lung. We considered lung as a porous medium and porosity is a function of tidal volume. Two dimensional generalized equation of momentum is used to study the flow of air and equation of motion is used to study the flow of nanoparticles of elongated shape. Darcy term for flow in porous media and shape factor for nonspherical nanoparticles are used in mathematical …


Qualitative Analysis Of A Modified Leslie-Gower Predator-Prey Model With Weak Allee Effect Ii, Manoj K. Singh, B. S. Bhadauria Jun 2019

Qualitative Analysis Of A Modified Leslie-Gower Predator-Prey Model With Weak Allee Effect Ii, Manoj K. Singh, B. S. Bhadauria

Applications and Applied Mathematics: An International Journal (AAM)

The article aims to study a modified Leslie-Gower predator-prey model with Allee effect II, affecting the functional response with the assumption that the extent to which the environment provides protection to both predator and prey is the same. The model has been studied analytically as well as numerically, including stability and bifurcation analysis. Compared with the predator-prey model without Allee effect, it is found that the weak Allee effect II can bring rich and complicated dynamics, such as the model undergoes to a series of bifurcations (Homoclinic, Hopf, Saddle-node and Bogdanov-Takens). The existence of Hopf bifurcation has been shown for …


Environmental Balance Through Optimal Control On Pollutants, Nita H. Shah, Foram A. Thakkar, Moksha H. Satia Jun 2019

Environmental Balance Through Optimal Control On Pollutants, Nita H. Shah, Foram A. Thakkar, Moksha H. Satia

Applications and Applied Mathematics: An International Journal (AAM)

Pollution, which is a very common term has been divided as primary pollutants and secondary pollutants. Primary pollutants are those who results directly from some process whereas secondary pollutants are caused due to intermixing and reaction of primary pollutants. These pollutants result into acid rain. In this paper, a mathematical model has been developed to study the environmental impact due to acid rain. Pollutants such as primary and secondary pollutants are the causes of acid rain. Control in terms of gases emitted by factories, smog, burning of coal and fossil fuels have been applied on primary pollutants, secondary pollutants and …


Resonance In The Motion Of A Geocentric Satellite Due To Poynting-Robertson Drag And Equatorial Ellipticity Of The Earth, Charanpreet Kaur, Binay K. Sharma, Sushil Yadav Jun 2019

Resonance In The Motion Of A Geocentric Satellite Due To Poynting-Robertson Drag And Equatorial Ellipticity Of The Earth, Charanpreet Kaur, Binay K. Sharma, Sushil Yadav

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, the problem of resonance in a motion of a geocentric satellite is numerically investigated under the consolidated gravitational forces of the Sun, the Earth including Earth’s equatorial ellipticity parameter and Poynting-Robertson (P-R) drag. We are presuming that bodies lying on an ecliptic plane are the Sun and the Earth, and satellite on orbital plane. Resonance is monitored between satellite’s mean motion and average angular velocity of the Earth around the Sun, and also between satellite’s mean motion and equatorial ellipticity parameter of the Earth. We also perform a systematic and thorough analysis in an attempt to understand …


Exact Feedback Linearization Of Systems With State-Space Modulation And Demodulation, Nikolaos I. Xiros Deng May 2019

Exact Feedback Linearization Of Systems With State-Space Modulation And Demodulation, Nikolaos I. Xiros Deng

University of New Orleans Theses and Dissertations

The control theory of nonlinear systems has been receiving increasing attention in recent years, both for its technical importance as well as for its impact in various fields of application. In several key areas, such as aerospace, chemical and petrochemical industries, bioengineering, and robotics, a new practical application for this tool appears every day. System nonlinearity is characterized when at least one component or subsystem is nonlinear. Classical methods used in the study of linear systems, particularly superposition, are not usually applied to the nonlinear systems. It is necessary to use other methods to study the control of these systems. …


School Policy Evaluated With Time-Reversible Markov Chain, Trajan Murphy, Iddo Ben-Ari May 2019

School Policy Evaluated With Time-Reversible Markov Chain, Trajan Murphy, Iddo Ben-Ari

Honors Scholar Theses

In this work we propose a reversible Markov chain scheme to model for the mobility of students affected by a grade school leveling policy. This model provides unified and mathematically tractable framework in which transition functions are sampled uniformly from the set of {\bf reversible} transition functions. The results from the study appear to confirm the disadvantageous effects of this school policy, on par with the of a previous model on the same policy.


Stochastic Modeling Of Neuronal Transport In Various Cellular Geometries, Abhishek Choudhary Mr., Peter Kramer May 2019

Stochastic Modeling Of Neuronal Transport In Various Cellular Geometries, Abhishek Choudhary Mr., Peter Kramer

Biology and Medicine Through Mathematics Conference

No abstract provided.


Topology And Dynamics Of Gene Regulatory Networks: A Meta-Analysis, Claus Kadelka May 2019

Topology And Dynamics Of Gene Regulatory Networks: A Meta-Analysis, Claus Kadelka

Biology and Medicine Through Mathematics Conference

No abstract provided.


Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor May 2019

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor

Senior Theses

Complexity is prevalent both in natural and in human-made systems, yet is not well understood quantitatively. Qualitatively, complexity describes a phenomena in which a system composed of individual pieces, each having simple interactions with one another, results in interesting bulk properties that would otherwise not exist. One example of a complex biological system is the bird flock, in particular, a starling murmuration. Starlings are known to move in the direction of their neighbors and avoid collisions with fellow starlings, but as a result of these simple movement choices, the flock as a whole tends to exhibit fluid-like movements and form …


Paper Structure Formation Simulation, Tyler R. Seekins May 2019

Paper Structure Formation Simulation, Tyler R. Seekins

Electronic Theses and Dissertations

On the surface, paper appears simple, but closer inspection yields a rich collection of chaotic dynamics and random variables. Predictive simulation of paper product properties is desirable for screening candidate experiments and optimizing recipes but existing models are inadequate for practical use. We present a novel structure simulation and generation system designed to narrow the gap between mathematical model and practical prediction. Realistic inputs to the system are preserved as randomly distributed variables. Rapid fiber placement (~1 second/fiber) is achieved with probabilistic approximation of chaotic fluid dynamics and minimization of potential energy to determine flexible fiber conformations. Resulting digital packed …


Dynamic Attribute-Level Best Worst Discrete Choice Experiments, Amanda Working, Mohammed Alqawba, Norou Diawara May 2019

Dynamic Attribute-Level Best Worst Discrete Choice Experiments, Amanda Working, Mohammed Alqawba, Norou Diawara

Mathematics & Statistics Faculty Publications

Dynamic modelling of decision maker choice behavior of best and worst in discrete choice experiments (DCEs) has numerous applications. Such models are proposed under utility function of decision maker and are used in many areas including social sciences, health economics, transportation research, and health systems research. After reviewing references on the study of such experiments, we present example in DCE with emphasis on time dependent best-worst choice and discrimination between choice attributes. Numerical examples of the dynamic DCEs are simulated, and the associated expected utilities over time of the choice models are derived using Markov decision processes. The estimates are …


Determining The Influence Of Lateral Margin Mechanical Properties On Glacial Flow, Kate Hruby May 2019

Determining The Influence Of Lateral Margin Mechanical Properties On Glacial Flow, Kate Hruby

Electronic Theses and Dissertations

The lateral margins of glaciers and ice streams play a significant role in glacial flow. Depending on their properties, like temperature and ice crystal orientation, they can cause a resistance to flow or enhance it. In combination with our current changing climate, flow patterns can dictate the mass balance of an ice body. It is therefore more important than ever to understand the impact that variations at the margins can have on flow. However, the lateral margins of glaciers and ice streams are an often-neglected part of ice dynamics; they are harder to sample than the center of a glacier’s …


Modelling Non-Linear Functional Responses In Competitive Biological Systems., Nickolas Goncharenko Mar 2019

Modelling Non-Linear Functional Responses In Competitive Biological Systems., Nickolas Goncharenko

Western Research Forum

One of the most versatile and well understood models in mathematical biology is the Competitive Lotka Volterra (CLV) model, which describes the behaviour of any number of exclusively competitive species (that is each species competes directly with every other species). Despite it's success in describing many phenomenon in biology, chemistry and physics the CLV model cannot describe any non-linear environmental effects (including resource limitation and immune response of a host due to infection). The reason for this is the theory monotone dynamical systems, which was codeveloped with the CLV model, does not apply when this non-linear effect is introduced. For …


From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto Mar 2019

From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

The Standard Model of particle physics has accomplished a great deal including the discovery of Higgs boson in 2012. However, since the supersymmetric extension of the Standard Model has not been successful so far, some physicists are asking what alternative deeper theory could be beyond the Standard Model? This article discusses the relationship between mathematics and physical reality and explores the ways to go from Big Science to “Deep Science”.