Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little Dec 2020

The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little

Dissertations & Theses (Open Access)

Lineage transcription factors mark, promote, and maintain multiple distinct cell types originating from a common progenitor. Despite their essential role, how such factors function and bind genome wide to orchestrate the epigenetic changes necessary to form and maintain these identities in vivo is unclear. One lineage transcription factor NK Homeobox 2-1 (NKX2-1) is expressed throughout the lung epithelium during development and was thought to be lost in the extraordinarily thin cell type required for gas exchange– the alveolar type 1 (AT1) cell. Complementing precise genetic knockouts with cell type-specific ChIP-seq, ATAC-seq, and scRNA-seq, our study shows that AT1 and AT2 …


Fgf20 In Olfactory System And Cochlea Development, Lu Morgan Yang May 2020

Fgf20 In Olfactory System And Cochlea Development, Lu Morgan Yang

Arts & Sciences Electronic Theses and Dissertations

The olfactory epithelium (OE) is a neurosensory organ required for the sense of smell. Turbinates, bony projections from the nasal cavity wall, increase the surface area within the nasal cavity lined by the OE. We identified a population of OE progenitor cells that expand horizontally during development to populate all lineages of the mature OE and increase OE surface area. We show that these Fgf20-positive, epithelium-spanning progenitor (FEP) cells are responsive to Wnt/β-Catenin signaling. Wnt signaling suppresses FEP cell differentiation into OE basal progenitors and their progeny, and positively regulates Fgf20 expression. We further show that FGF20 signals to the …


Elucidating The Functional Location Of Platelet-Derived Growth Factor Receptor Alpha, Creation Of A Review Chapter On The Use Of Zebrafish In Studying Congenital Heart Defects, And Using 3d Printing To Create Laboratory Tools, Jaret Lieberth May 2020

Elucidating The Functional Location Of Platelet-Derived Growth Factor Receptor Alpha, Creation Of A Review Chapter On The Use Of Zebrafish In Studying Congenital Heart Defects, And Using 3d Printing To Create Laboratory Tools, Jaret Lieberth

Honors Theses

Congenital heart defects (CHDs) are currently the most prevalent form of birth defect in the United States. Their combined frequency and severity make necessary a deeper understanding of the molecular underpinnings guiding heart formation. The first major step in cardiac morphogenesis, cardiac fusion, involves the medial movement of bilateral populations of myocardial precursor cells to the embryonic midline, where they merge to form the primitive heart tube. Although crucial to subsequent organogenesis, the precise mechanisms governing cardiac fusion remain unknown. Previous studies have found that a mutation in platelet-derived growth factor receptor alpha (pdgfra), called refuse-to-fuse (ref), results …


Evaluation Of The Bax-Vdac Interaction And Their Influence On Apoptosis In Drosophila Melanogaster, Frances Marie Gatlin May 2020

Evaluation Of The Bax-Vdac Interaction And Their Influence On Apoptosis In Drosophila Melanogaster, Frances Marie Gatlin

Honors Theses

Apoptosis, also known as programmed cell death, is a cellular process used for development or for when cells undergo injury or stress. The Bcl2 family of proteins includes both pro-apoptotic and anti-apoptotic proteins that control the intrinsic pathway of apoptosis. Understanding the mechanisms and influence these proteins have on apoptosis is an important area of research focused on in Dr. Jones’s lab. Evidence shows a homology amongst the Bcl2 family of proteins at the BH3 domain. Dr. Jekabsons' lab has found a potential homology amongst VDAC 1-3 and the Bcl2 family at the BH3 domain.

Specifically, our lab is using …


Arid1a Haploinsufficiency Initiates Neural Crest Transformation In A Mouse Model Of Mycn-Driven Neuroblastoma, Kirby A. Wallace Apr 2020

Arid1a Haploinsufficiency Initiates Neural Crest Transformation In A Mouse Model Of Mycn-Driven Neuroblastoma, Kirby A. Wallace

Theses and Dissertations (ETD)

Mouse models of cancer are critical for developing therapeutic treatments for pediatric patients. Recent sequencing studies of neuroblastoma (NBL) patient tumors have uncovered precise deletions in the chromatin remodeler and tumor suppressor gene (TSG) ARID1A. Additional causal studies supported ARID1A’s candidacy as a putative 1p36 TSG in MYCN-driven NBL. This study aimed to causally test Arid1a loss during Mycn-driven NBL initiation through the development of a mouse model of high risk NBL.In this study, we modified a Mycn-driven mouse model of NBL to incorporate Cre mediated deletion of floxed Arid1a. Briefly, in freshly isolated embryonic day 9.5 primary trunk neural …


The Effects Of Internal Physiology On Polyphenic Horn Development In The Dung Beetle Onthophagus Taurus, Naomi Garrett Williamson Jan 2020

The Effects Of Internal Physiology On Polyphenic Horn Development In The Dung Beetle Onthophagus Taurus, Naomi Garrett Williamson

Graduate Theses, Dissertations, and Problem Reports

An organism’s phenotype can be affected in development by alterations to gene expression based on environmental inputs. Nutrition is one such environmental input and the central regulator of development of large horn or small horn phenotypes in the dung beetle species, Onthophagus taurus. However, little is known about the nature of chemical compounds that are critical to this plastic horn development. To better understand these compounds, we are utilizing an untargeted metabolomic approach as well as a targeted gene approach. Through the metabolomic approach, it was uncovered that environmental conditions tend to have a greater impact on metabolomic composition …


Developmental Mechanisms For The Diversification Of Polyphenic Morphs In The Head Horn Of Onthophagine Beetles (Coleoptera: Scarabaeidae Onthophagus Taurus): Plasticity Through Nutrition, Logan Paul Zeigler Jan 2020

Developmental Mechanisms For The Diversification Of Polyphenic Morphs In The Head Horn Of Onthophagine Beetles (Coleoptera: Scarabaeidae Onthophagus Taurus): Plasticity Through Nutrition, Logan Paul Zeigler

Graduate Theses, Dissertations, and Problem Reports

Developmental plasticity is the phenotypic variation between organisms that is caused by environmental interactions affecting the developmental systems of organisms. The research focused primarily on nutrition-responsive developmental plasticity. In this research we used the nutritionally determined head horn development of Onthophagus taurus to better understand the developmental mechanisms and genetic underpinnings of nutrition-responsive trait development. We focused specifically on altering the availability of specific nutrition-related primary metabolites, cholesterol and palmitic acid, identified in the activity of The Hedgehog pathway, a critical pathway in head horn development. By altering diet composition using cholesterol, reducing transcript expression of an acyltransferase gene, rasp …


The Evolution And Development Of Chiropteran Flight, Emmaline Willis Jan 2020

The Evolution And Development Of Chiropteran Flight, Emmaline Willis

Honors Theses and Capstones

No abstract provided.


Characterizing Changes In The Colonic Epithelium Of Lrig3 Null Mice, Natalie Pedicino Jan 2020

Characterizing Changes In The Colonic Epithelium Of Lrig3 Null Mice, Natalie Pedicino

Scripps Senior Theses

The lining of the colon, or colonic epithelium, is a very dynamic and highly regulated tissue in the human body. Colonic stem cells are a key component of this tissue, and they make up the stem cell niche, which is found at the base of the colonic crypt. Regeneration of the colonic epithelium, which occurs on a weekly basis, is a complex process, and proteins responsible for directing regeneration are still being discovered. Two critical regulatory proteins, Lrig1 and Lrig3, have been shown to modulate the EGFR pathway, a key signaling pathway for growth, differentiation, and regeneration. Data from the …


Characterizing The Requirements For The Matricellular Protein, Dccn, In Nervous System Function, Elizabeth L. Catudio Garrett Jan 2020

Characterizing The Requirements For The Matricellular Protein, Dccn, In Nervous System Function, Elizabeth L. Catudio Garrett

Graduate Student Theses, Dissertations, & Professional Papers

The brain is organized as a complex network of specialized neurons that communicate via a combination of electrical and chemical signals. Our brains function to generate movement, control organ function, or direct complex behaviors; all of which requires the ability to regulate the flow of communication between circuits and networks. Work in this thesis addresses two areas of neuron communication: first, how does the release of more than one neurotransmitter from a single neuron impact behavior, and second, are matricellular proteins (MCPs) key contributors to synaptic transmission and neuron function? The conserved CCN family of MCPs have a …