Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Dentistry

Electronic Thesis and Dissertation Repository

Biocompatibility

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

The Application Of The Ultrafine Technology In Improving The Biocompatibility And Osteo-Inductivity Of Dental Implants, Nicholas Y. Hou Aug 2015

The Application Of The Ultrafine Technology In Improving The Biocompatibility And Osteo-Inductivity Of Dental Implants, Nicholas Y. Hou

Electronic Thesis and Dissertation Repository

Dental implants are very effective medical devices. However, although stable, the conventional titanium implants are not very bioactive which in some instances could reduce their efficacy. This thesis described the research progress of using polymeric ultrafine-particles with bioactive additives to enrich the surface of titanium substrate, thereby increasing the biocompatibility and osteo-inductivity of the biomaterial. During this doctoral project, three different types of polymers were examined, initially the conventional polyester, and later the novel epoxy as well as the epoxy/polyester hybrid polymers. Physical characterizations confirmed that all of the coating powders were ultrafine particles, and homogeneous surfaces were constructed from …


Glass-Ceramics For Non-Metallic Dental Implant Applications, Selma Saadaldin Dec 2013

Glass-Ceramics For Non-Metallic Dental Implant Applications, Selma Saadaldin

Electronic Thesis and Dissertation Repository

Metallic dental implants are an important treatment for the replacement of missing teeth. However, for esthetic and environmental issues, there is a need to develop non-metallic dental implant materials. In this thesis, two novel glass-ceramics (GCs), miserite and wollastonite, were synthesized for one-piece dental implant applications. Glasses were synthesized by wet chemical methods, followed by calcination, melting and quenching. The crystallization kinetics of these glasses were determined by differential thermal analysis (DTA). GC specimens were produced by cold pressing of the glass powder and sintering using schedules determined by DTA. The crystalline phases and microstructure of the GC samples were …