Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron Dec 2023

Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron

Doctoral Dissertations

This work introduces improvements to the stability and generalizability of Cyclic DARTS (CDARTS). CDARTS is a Differentiable Architecture Search (DARTS)-based approach to neural architecture search (NAS) that uses a cyclic feedback mechanism to train search and evaluation networks concurrently, thereby optimizing the search process by enforcing that the networks produce similar outputs. However, the dissimilarity between the loss functions used by the evaluation networks during the search and retraining phases results in a search-phase evaluation network, a sub-optimal proxy for the final evaluation network utilized during retraining. ICDARTS, a revised algorithm that reformulates the search phase loss functions to ensure …


Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu Dec 2023

Exact Models, Heuristics, And Supervised Learning Approaches For Vehicle Routing Problems, Zefeng Lyu

Doctoral Dissertations

This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa Dec 2023

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


Insights Into The Application Of Deep Reinforcement Learning In Healthcare And Materials Science, Benjamin R. Smith Aug 2023

Insights Into The Application Of Deep Reinforcement Learning In Healthcare And Materials Science, Benjamin R. Smith

Doctoral Dissertations

Reinforcement learning (RL) is a type of machine learning designed to optimize sequential decision-making. While controlled environments have served as a foundation for RL research, due to the growth in data volumes and deep learning methods, it is now increasingly being applied to real-world problems. In our work, we explore and attempt to overcome challenges that occur when applying RL to solve problems in healthcare and materials science.

First, we explore how issues in bias and data completeness affect healthcare applications of RL. To understand how bias has already been considered in this area, we survey the literature for existing …


Multidimensional Investigation Of Tennessee’S Urban Forest, Jillian L. Gorrell May 2023

Multidimensional Investigation Of Tennessee’S Urban Forest, Jillian L. Gorrell

Doctoral Dissertations

Preserving existing trees in urban areas and properly cultivating urban forest conservation and management opportunities is valuable to the ever-growing urban environment and necessary for creating optimal experiences and educational tools to meet the needs of increasing urban populations. This dissertation contains studies investigating several facets of the urban forest, including environmental effects of deforestation and urbanization, tree equity, and urban forest facility management and accessibility. Community education and outreach at arboreta about the importance of the tree canopy can help promote environmental stewardship. A digital questionnaire was electronically distributed to representatives of arboreta certified through the Tennessee Division of …


Enhancing The Performance Of The Mtcnn For The Classification Of Cancer Pathology Reports: From Data Annotation To Model Deployment, Kevin De Angeli Dec 2022

Enhancing The Performance Of The Mtcnn For The Classification Of Cancer Pathology Reports: From Data Annotation To Model Deployment, Kevin De Angeli

Doctoral Dissertations

Information contained in electronic health records (EHR) combined with the latest advances in machine learning (ML) have the potential to revolutionize the medical sciences. In particular, information contained in cancer pathology reports is essential to investigate cancer trends across the country. Unfortunately, large parts of information in EHRs are stored in the form of unstructured, free-text which limit their usability and research potential. To overcome this accessibility barrier, cancer registries depend on expert personnel who read, interpret, and extract relevant information. Naturally, as the number of stored pathology reports increases every day, depending on human experts presents scalability challenges. Recently, …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Machine Learning For Earth Systems Modeling, Analysis And Predictability, Linsey Passarella Aug 2022

Machine Learning For Earth Systems Modeling, Analysis And Predictability, Linsey Passarella

Doctoral Dissertations

Artificial intelligence (AI) and machine learning (ML) methods and applications have been continuously explored in many areas of scientific research. While these methods have lead to many advances in climate science, there remains room for growth especially in Earth System Modeling, analysis and predictability. Due to their high computational expense and large volumes of complex data they produce, earth system models (ESMs) provide an abundance of potential for enhancing both our understanding of the climate system as well as improving performance of ESMs themselves using ML techniques. Here I demonstrate 3 specific areas of development using ML: statistical downscaling, predictability …


Iterative Random Forest Based High Performance Computing Methods Applied To Biological Systems And Human Health, Angelica M. Walker May 2022

Iterative Random Forest Based High Performance Computing Methods Applied To Biological Systems And Human Health, Angelica M. Walker

Doctoral Dissertations

As technology improves, the field of biology has increasingly utilized high performance computing techniques to analyze big data and provide insights into biological systems. A reproducible, efficient, and effective method is required to analyze these large datasets of varying types into interpretable results. Iterative Random Forest (iRF) is an explainable supervised learner that makes few assumptions about the relationships between variables and is able to capture complex interactions that are common in biological systems. This forest based learner is the basis of iRF-Leave One Out Prediction (iRF-LOOP), an algorithm that uses a matrix of data to produce all-to-all predictive networks. …


Auto-Curation Of Large Evolving Image Datasets, Sara Mousavicheshmehkaboodi Dec 2021

Auto-Curation Of Large Evolving Image Datasets, Sara Mousavicheshmehkaboodi

Doctoral Dissertations

Large image collections are becoming common in many fields and offer tantalizing opportunities to transform how research, work, and education are conducted if the information and associated insights could be extracted from them. However, major obstacles to this vision exist. First, image datasets with associated metadata contain errors and need to be cleaned and organized to be easily explored and utilized. Second, such collections typically lack the necessary context or may have missing attributes that need to be recovered. Third, such datasets are domain-specific and require human expert involvement to make the right interpretation of the image content. Fourth, the …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan May 2021

Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan

Doctoral Dissertations

In this last decade, several regulatory frameworks across the world in all modes of transportation had brought fatigue and its risk management in operations to the forefront. Of all transportation modes air travel has been the safest means of transportation. Still as part of continuous improvement efforts, regulators are insisting the operators to adopt strong fatigue science and its foundational principles to reinforce safety risk assessment and management. Fatigue risk management is a data driven system that finds a realistic balance between safety and productivity in an organization. This work discusses the effects of mathematical modeling of fatigue and its …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Nonparametric Bayesian Deep Learning For Scientific Data Analysis, Devanshu Agrawal Dec 2020

Nonparametric Bayesian Deep Learning For Scientific Data Analysis, Devanshu Agrawal

Doctoral Dissertations

Deep learning (DL) has emerged as the leading paradigm for predictive modeling in a variety of domains, especially those involving large volumes of high-dimensional spatio-temporal data such as images and text. With the rise of big data in scientific and engineering problems, there is now considerable interest in the research and development of DL for scientific applications. The scientific domain, however, poses unique challenges for DL, including special emphasis on interpretability and robustness. In particular, a priority of the Department of Energy (DOE) is the research and development of probabilistic ML methods that are robust to overfitting and offer reliable …


Exploration Of Mid To Late Paleozoic Tectonics Along The Cincinnati Arch Using Gis And Python To Automate Geologic Data Extraction From Disparate Sources, Kenneth Steven Boling Dec 2020

Exploration Of Mid To Late Paleozoic Tectonics Along The Cincinnati Arch Using Gis And Python To Automate Geologic Data Extraction From Disparate Sources, Kenneth Steven Boling

Doctoral Dissertations

Structure contour maps are one of the most common methods of visualizing geologic horizons as three-dimensional surfaces. In addition to their practical applications in the oil and gas and mining industries, these maps can be used to evaluate the relationships of different geologic units in order to unravel the tectonic history of an area. The construction of high-resolution regional structure contour maps of a particular geologic horizon requires a significant volume of data that must be compiled from all available surface and subsurface sources. Processing these data using conventional methods and even basic GIS tools can be tedious and very …


Unifying Chemistry And Machine Learning For The Study Of Noncovalent Interactions, Jacob A. Townsend Dec 2020

Unifying Chemistry And Machine Learning For The Study Of Noncovalent Interactions, Jacob A. Townsend

Doctoral Dissertations

Gas separations are in great demand for carbon emission reduction, natural gas purification, oxygen isolation, and much more. Many of these separations rely on cost-prohibitive methods such as cryogenic distillation or strong-binding solvents. As a result, novel materials are being developed to subvert the energetic expense of gas separation processes. These studies focus on improving the performance of alternative materials, including (but not limited to) metal-organic frameworks, covalent organic frameworks, dense polymeric membranes, porous polymers, and ionic liquids.

In this work, the atomistic effects of functional units are explored for gas separations processes using electronic structure theory and machine learning. …


Mobile Location Data Analytics, Privacy, And Security, Yunhe Feng Aug 2020

Mobile Location Data Analytics, Privacy, And Security, Yunhe Feng

Doctoral Dissertations

Mobile location data are ubiquitous in the digital world. People intentionally and unintentionally generate numerous location data when connecting to cellular networks or sharing posts on social networks. As mobile devices normally choose to communicate with nearby cell towers outdoor, it is reasonable to infer human locations based on cell tower coordinates. Many social networking platforms, such as Twitter, allow users to geo-tag their posts optionally, publishing personal locations to friends or everyone. These location data are particularly useful for understanding mobile usage behaviors and human mobility patterns. Meanwhile, the public expresses great concern about the privacy and security of …