Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Virginia Commonwealth University

Theses/Dissertations

Machine learning

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Adaptive Multi-Label Classification On Drifting Data Streams, Martha Roseberry Jan 2024

Adaptive Multi-Label Classification On Drifting Data Streams, Martha Roseberry

Theses and Dissertations

Drifting data streams and multi-label data are both challenging problems. When multi-label data arrives as a stream, the challenges of both problems must be addressed along with additional challenges unique to the combined problem. Algorithms must be fast and flexible, able to match both the speed and evolving nature of the stream. We propose four methods for learning from multi-label drifting data streams. First, a multi-label k Nearest Neighbors with Self Adjusting Memory (ML-SAM-kNN) exploits short- and long-term memories to predict the current and evolving states of the data stream. Second, a punitive k nearest neighbors algorithm with a self-adjusting …


Adaptable And Trustworthy Machine Learning For Human Activity Recognition From Bioelectric Signals, Morgan S. Stuart Jan 2024

Adaptable And Trustworthy Machine Learning For Human Activity Recognition From Bioelectric Signals, Morgan S. Stuart

Theses and Dissertations

Enabling machines to learn measures of human activity from bioelectric signals has many applications in human-machine interaction and healthcare. However, labeled activity recognition datasets are costly to collect and highly varied, which challenges machine learning techniques that rely on large datasets. Furthermore, activity recognition in practice needs to account for user trust - models are motivated to enable interpretability, usability, and information privacy. The objective of this dissertation is to improve adaptability and trustworthiness of machine learning models for human activity recognition from bioelectric signals. We improve adaptability by developing pretraining techniques that initialize models for later specialization to unseen …


Learning From Multi-Class Imbalanced Big Data With Apache Spark, William C. Sleeman Iv Jan 2021

Learning From Multi-Class Imbalanced Big Data With Apache Spark, William C. Sleeman Iv

Theses and Dissertations

With data becoming a new form of currency, its analysis has become a top priority in both academia and industry, furthering advancements in high-performance computing and machine learning. However, these large, real-world datasets come with additional complications such as noise and class overlap. Problems are magnified when with multi-class data is presented, especially since many of the popular algorithms were originally designed for binary data. Another challenge arises when the number of examples are not evenly distributed across all classes in a dataset. This often causes classifiers to favor the majority class over the minority classes, leading to undesirable results …


Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon Jan 2021

Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon

Theses and Dissertations

Machine learning models for chemical property predictions are high dimension design challenges spanning multiple disciplines. Free and open-source software libraries have streamlined the model implementation process, but the design complexity remains. In order better navigate and understand the machine learning design space, model information needs to be organized and contextualized. In this work, instances of chemical property models and their associated parameters were stored in a Neo4j property graph database. Machine learning model instances were created with permutations of dataset, learning algorithm, molecular featurization, data scaling, data splitting, hyperparameters, and hyperparameter optimization techniques. The resulting graph contains over 83,000 nodes …


Reliable And Interpretable Machine Learning For Modeling Physical And Cyber Systems, Daniel L. Marino Lizarazo Jan 2021

Reliable And Interpretable Machine Learning For Modeling Physical And Cyber Systems, Daniel L. Marino Lizarazo

Theses and Dissertations

Over the past decade, Machine Learning (ML) research has predominantly focused on building extremely complex models in order to improve predictive performance. The idea was that performance can be improved by adding complexity to the models. This approach proved to be successful in creating models that can approximate highly complex relationships while taking advantage of large datasets. However, this approach led to extremely complex black-box models that lack reliability and are difficult to interpret. By lack of reliability, we specifically refer to the lack of consistent (unpredictable) behavior in situations outside the training data. Lack of interpretability refers to the …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …


Eeg Interictal Spike Detection Using Artificial Neural Networks, Howard J. Carey Iii Jan 2016

Eeg Interictal Spike Detection Using Artificial Neural Networks, Howard J. Carey Iii

Theses and Dissertations

Epilepsy is a neurological disease causing seizures in its victims and affects approximately 50 million people worldwide. Successful treatment is dependent upon correct identification of the origin of the seizures within the brain. To achieve this, electroencephalograms (EEGs) are used to measure a patient’s brainwaves. This EEG data must be manually analyzed to identify interictal spikes that emanate from the afflicted region of the brain. This process can take a neurologist more than a week and a half per patient. This thesis presents a method to extract and process the interictal spikes in a patient, and use them to reduce …


Segmentation And Fracture Detection In X-Ray Images For Traumatic Pelvic Injury, Rebecca Smith Apr 2010

Segmentation And Fracture Detection In X-Ray Images For Traumatic Pelvic Injury, Rebecca Smith

Theses and Dissertations

Due to the risk of complications such as hemorrhage, severe pelvic trauma is associated with a high mortality rate. Prompt medical treatment is therefore vital. However, the complexity of the injuries can make successful diagnosis and treatment challenging. By generating predictions and recommendations based on patient data, computer-aided decision support systems have the potential to assist physicians in improving outcomes. However, no current system considers features automatically extracted from medical images. This dissertation describes a system to extract diagnostic features from pelvic X-ray images that can be used as input to the prediction process; specifically, the presence of fracture and …


K X N Trust-Based Agent Reputation, Christopher Alonzo Parker Jan 2006

K X N Trust-Based Agent Reputation, Christopher Alonzo Parker

Theses and Dissertations

In this research, a multi-agent system called KMAS is presented that models an environment of intelligent, autonomous, rational, and adaptive agents that reason about trust, and adapt trust based on experience. Agents reason and adapt using a modification of the k-Nearest Neighbor algorithm called (k X n) Nearest Neighbor where k neighbors recommend reputation values for trust during each of n interactions. Reputation allows a single agent to receive recommendations about the trustworthiness of others. One goal is to present a recommendation model of trust that outperforms MAS architectures relying solely on direct agent interaction. A second goal is to …