Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Accurate Characterization Of Binding Kinetics And Allosteric Mechanisms For The Hsp90 Chaperone Inhibitors Using Ai-Augmented Integrative Biophysical Studies, Chao Xu, Xianglei Zhang, Lianghao Zhao, Gennady M. Verkhivker, Fang Bai Apr 2024

Accurate Characterization Of Binding Kinetics And Allosteric Mechanisms For The Hsp90 Chaperone Inhibitors Using Ai-Augmented Integrative Biophysical Studies, Chao Xu, Xianglei Zhang, Lianghao Zhao, Gennady M. Verkhivker, Fang Bai

Mathematics, Physics, and Computer Science Faculty Articles and Research

The binding kinetics of drugs to their targets are gradually being recognized as a crucial indicator of the efficacy of drugs in vivo, leading to the development of various computational methods for predicting the binding kinetics in recent years. However, compared with the prediction of binding affinity, the underlying structure and dynamic determinants of binding kinetics are more complicated. Efficient and accurate methods for predicting binding kinetics are still lacking. In this study, quantitative structure–kinetics relationship (QSKR) models were developed using 132 inhibitors targeting the ATP binding domain of heat shock protein 90α (HSP90α) to predict the dissociation rate …


Β-Sheets Mediate The Conformational Change And Allosteric Signal Transmission Between The Aslov2 Termini, Sian Xiao, Mayar Terek Ibrahim, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao Mar 2024

Β-Sheets Mediate The Conformational Change And Allosteric Signal Transmission Between The Aslov2 Termini, Sian Xiao, Mayar Terek Ibrahim, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

Avena sativa phototropin 1 light-oxygen-voltage 2 domain (AsLOV2) is a model protein of Per-Arnt-Sim (PAS) superfamily, characterized by conformational changes in response to external environmental stimuli. This conformational change begins with the unfolding of the N-terminal A'α helix in the dark state followed by the unfolding of the C-terminal Jα helix. The light state is characterized by the unfolded termini and the subsequent modifications in hydrogen bond patterns. In this photoreceptor, β-sheets are identified as crucial components for mediating allosteric signal transmission between the two termini. Through combined experimental and computational investigations, the Hβ …


Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Sep 2022

Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we performed all-atom MD simulations of RBD–ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD–ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD–ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD–ACE2 complexes. By employing the ensemble-based global network analysis, we …


Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker Sep 2022

Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the current study, we introduce an integrative machine learning strategy for the autonomous molecular design of protein kinase inhibitors using variational autoencoders and a novel cluster-based perturbation approach for exploration of the chemical latent space. The proposed strategy combines autoencoder-based embedding of small molecules with a cluster-based perturbation approach for efficient navigation of the latent space and a feature-based kinase inhibition likelihood classifier that guides optimization of the molecular properties and targeted molecular design. In the proposed generative approach, molecules sharing similar structures tend to cluster in the latent space, and interpolating between two molecules in the latent space …