Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

PDF

Missouri University of Science and Technology

Series

2006

Concrete

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Using Coupled Eulerian And Lagrangian Grids To Model Explosive Interactions With Buildings, Braden Lusk, William P. Schonberg, Jason Baird, Robert S. Woodley, Warren Noll Nov 2006

Using Coupled Eulerian And Lagrangian Grids To Model Explosive Interactions With Buildings, Braden Lusk, William P. Schonberg, Jason Baird, Robert S. Woodley, Warren Noll

Mining Engineering Faculty Research & Creative Works

This paper presents the development of a computational model that can be used to study the interactions between structures and detonating explosives contained within them. This model was developed as part of an effort to develop a rubble characterization model for use in AmmoSIM, an agent based urban tactical decision aid (UTDA) software for weapon-target pairing. The rubble pile created following the collapse of a building in a combat situation can significantly impact mission accomplishment, particularly in the area of movement and maneuver. The information provided by AmmoSIM will enable both platoon level and command center staff to make informed …


Semiempirical Electromagnetic Modeling Of Crack Detection And Sizing In Cement-Based Materials Using Near-Field Microwave Methods, Jagadish Nadakuduti, Genda Chen, R. Zoughi Apr 2006

Semiempirical Electromagnetic Modeling Of Crack Detection And Sizing In Cement-Based Materials Using Near-Field Microwave Methods, Jagadish Nadakuduti, Genda Chen, R. Zoughi

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Detection and characterization of cracks in cement-based materials is an integral part of damage evaluation for health monitoring of civil structures. Microwave signals are able to penetrate inside of dielectric materials (e.g., cement-based materials) and are sensitive to local, physical, geometrical, and dielectric variations in a structure. This makes microwave nondestructive testing and evaluation (NDT&E) techniques suitable for inspection and health monitoring of civil structures. Near-field microwave NDT&E techniques offer the added advantage of providing high spatial resolution, requiring simple hardware that may be portable, low power, fast, real time, and robust. Additionally, these techniques are noncontact and one-sided. Besides …