Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Influence Of Tethered, Axially Coordinated Ligands On Rh(Ii,Ii)-Catalyzed Carbene Transfer Reactions, Cristian E. Zavala May 2022

Influence Of Tethered, Axially Coordinated Ligands On Rh(Ii,Ii)-Catalyzed Carbene Transfer Reactions, Cristian E. Zavala

Doctoral Dissertations

Dirhodium (II,II) paddlewheel complexes have become ubiquitous in diazo-mediated carbene transfer reactions. The Rh(II,II)-carbene intermediate is capable of a large variety of transformations such as cyclopropanation, C-H and X-H (O, N, S, Si, B) insertion reactions, cyclopropenations, and ylide transformations. Cyclopropanation reactions resulting in the formation of functionalized cyclopropane structures has always been a major focus in Rh(II,II)-carbene chemistry. Improvements on catalytic performance in cyclopropanations has largely focused on the modification of the bridging ligands and has resulted in Rh(II,II) catalysts that exhibit high reactivity and selectivity in cyclopropanation reactions. However, high enantio- and diastereoselectivity is not easily achieved with …


Fine Tuning Rhii Complexes With Tethered, Axial Coordination: Structural Studies And Application To Diazo-Mediated Cyclopropanation Reactions, Derek Cressy May 2021

Fine Tuning Rhii Complexes With Tethered, Axial Coordination: Structural Studies And Application To Diazo-Mediated Cyclopropanation Reactions, Derek Cressy

Doctoral Dissertations

The cyclopropane moiety is an attractive synthetic target due to its application in pharmaceuticals and medicinal research. One effective strategy involves the formation of metal carbenoid species from diazo reagents. The carbenoid then reacts with an olefin substrate to generate the cyclopropane ring. Of the metal complexes that can facilitate this reaction, dirhodium(II) paddlewheel complexes are arguably the most prevalent catalysts. This is because modification of the bridging ligands enables control to be exerted over the catalyst’s chemoselectivity and enantioselectivity. Exploiting the axial site as a control element is often overlooked as strongly coordinated Lewis bases inhibit catalysis. Despite this, …


Investigating The Effects Of Tethered, Axial Lewis Base Coordination On Rhodium(Ii) Paddlewheel Complexes, William A. Sheffield Aug 2020

Investigating The Effects Of Tethered, Axial Lewis Base Coordination On Rhodium(Ii) Paddlewheel Complexes, William A. Sheffield

Masters Theses

Dirhodium(II) paddlewheel complexes are highly renowned for their use in diazo decomposition to form a metallic-carbenoid species. This species has been used for a diverse range of chemical transformations including cyclopropanation, cycloproprenation, C-H functionalization, and X-H (Si, S, O, N) insertion reactions. Modulation of these catalysts traditionally involve the exchange of bridging ligands which have profound effects on the catalyst’s reactivity, chemo, and enantioselectivity. Recent interest has turned towards to modifying the axial sites present in the complex as an additional means of modulating catalytic activity. These sites normally serve as the active site of the catalyst, but coordination of …


Co(Ii) Based Metalloradical Catalysis: Carbene And Nitrene Transfer Reactions, Joseph B. Gill Nov 2014

Co(Ii) Based Metalloradical Catalysis: Carbene And Nitrene Transfer Reactions, Joseph B. Gill

USF Tampa Graduate Theses and Dissertations

Radical chemistry has attracted a large amount of research interest over the last few decades and radical reactions have recently been recognized as powerful tools for organic synthesis. The synthetic applications of radicals have been demonstrated in many fields, including in the synthesis of complex natural products. Radical reactions have a number of inherent synthetic advantages over their ionic counterparts. For example, they typically proceed at fast reaction rates under mild and neutral conditions in a broad spectrum of solvents and show significantly greater functional group tolerance. Furthermore, radical processes have the capability of performing in a cascade fashion, allowing …


Asymmetric Intra- And Intermolecular Cyclopropanation By Co(Ii)- Based Metalloradical Catalysis, Xue Xu Jan 2012

Asymmetric Intra- And Intermolecular Cyclopropanation By Co(Ii)- Based Metalloradical Catalysis, Xue Xu

USF Tampa Graduate Theses and Dissertations

Metal-catalyzed cyclopropanation of olefins with diazo reagents has attracted research interest because of its fundamental and practical importance. The resulting cyclopropyl units are recurrent motifs in biologically important molecules and can serve as versatile precursors in organic synthesis. Since they were first introduced in 2004, Co(II) complexes of D2-symmetric chiral amidoporphyrins [Co(D2-Por*)] have emerged as a new class of catalysts for asymmetric cyclopropanation. These metalloradical catalysts have been shown to be highly effective for asymmetric intermolecular cyclopropanation of a broad scope of substrates with different classes of carbene sources, particularly including electron-deficient olefins and acceptor/acceptor-substituted …


The Design And Synthesis Of Functionalized Porphyrins And Their Applications In Group Transfer Reactions, Medicine, And Materials, Kimberly Bliss Fields Oct 2010

The Design And Synthesis Of Functionalized Porphyrins And Their Applications In Group Transfer Reactions, Medicine, And Materials, Kimberly Bliss Fields

USF Tampa Graduate Theses and Dissertations

Porphyrins and their analogs are a class of chemically and biologically important compounds that have found a variety of applications in different fields such as catalysis, medicine, and materials. The physical, chemical, and biological dependence of the peripheral substituents of porphyrins on their properties has prompted great effort towards the synthesis of new porphyrins with different electronic, steric, and conformational environments. To this end, porphyrins have been prepared using a modular approach from bromo- and triflate synthons. These synthons underwent palladium-catalyzed cross-coupling with chiral amines, amides, alcohols, and boronic esters to create products that were tested for biological activity.

Metalloporphyrins …