Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Theses/Dissertations

DFT

Institution
Publication Year
Publication

Articles 1 - 30 of 57

Full-Text Articles in Entire DC Network

Synthesis And Computational Studies Of Α- And Δ-Substituted Macrocyclic Europium And Ytterbium Complexes, Delainey Amara Winder Jul 2024

Synthesis And Computational Studies Of Α- And Δ-Substituted Macrocyclic Europium And Ytterbium Complexes, Delainey Amara Winder

Dissertations and Theses

The uses of macrocyclic lanthanide complexes are vast, with many targeted MRI contrast agents at the forefront of the field. Many of these are ParaCEST agents, which require exchangeable protons accessible on the macrocycle and the slow exchange of coordinated water molecules. The substitution at both the α- and δ-carbon on the amide pendant arm of these macrocyclic lanthanide complexes can lock bulky groups on the δ-carbon to a pseudo-axial position. When the α- and δ-carbons have the same chirality, the bulky group will be pseudo-equatorial, and when the chirality is opposed, the bulky group will be pseudo-axial. By performing …


Theoretical Spectroscopic Predictions Of Electronically Excited States, Noah R. Garrett May 2024

Theoretical Spectroscopic Predictions Of Electronically Excited States, Noah R. Garrett

Honors Theses

The quest for faster computation of anharmonic vibrational frequencies of both ground and excited electronic states has led to combining coupled cluster theory harmonic force constants with density functional theory (DFT) cubic and quartic force constants for defining a quartic force field (QFF) utilized in conjunction with vibrational perturbation theory at second order (VPT2). This work shows that explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples level [CCSD(T)-F12] provides accurate anharmonic vibrational frequencies and rotational constants when conjoined with any of B3LYP, CAM-B3LYP, BHandHLYP, PBE0, and ωB97XD for roughly one-quarter of the computational time of the …


Transient Diode Laser Absorption Spectroscopy For Measuring Collisional Quenching Rates Of Co And Its Potential For Studying H2o, Jordan M. Polvere Jan 2024

Transient Diode Laser Absorption Spectroscopy For Measuring Collisional Quenching Rates Of Co And Its Potential For Studying H2o, Jordan M. Polvere

Master’s Theses

Motivated by the necessity of non-LTE models that account for species that are not in Local Thermodynamic Equilibrium (LTE) in Titan’s and Earth’s atmospheres, collisional quenching rates of CO and H2O(g) have been studied. Providing more accurate and precise values of collisional quenching rate coefficients is crucial in the development of more advanced atmospheric models, which are important to fields of science such as meteorology and astronomy. Rates of collisional quenching of CO(v=1,2) by CO and CO(v=2) by N2 at approximately 301-321 K were measured by transient diode laser absorption spectroscopy. The rate coefficients of CO(v=1)-CO, CO(v=2)-CO, and …


Computational Quantum Chemistry Studies Of The Stabilities Of Radical Adducts Formed During The Oxidation Of Melatonin Derivatives, James Horne Dec 2023

Computational Quantum Chemistry Studies Of The Stabilities Of Radical Adducts Formed During The Oxidation Of Melatonin Derivatives, James Horne

Electronic Theses and Dissertations

Melatonin is a natural antioxidant that has been investigated for properties as a potential spin trap to identify short-lived free radicals. Computational quantum chemistry studies have been performed for the oxidation of melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine. This research focused on modification of melatonin into derivatives and analyzing the change in total molecular energy from melatonin to its oxidation product, as well as the corresponding derivatives. Each of the molecular geometries were optimized at the DFT/B3LYP/6-31G(d), DFT/B3LYP/cc-pVXZ (X = D, T), HF/6-31G(d), HF/cc-PVXZ (X = D, T), MP2/6-31G(d), and MP2/cc-PVXZ (X = D, T) levels of theory. …


Atomistic Assessment Of Drug-Phospholipid Interactions Consequent To Cancer Treatment: A Study Of Anthracycline Cardiotoxicity, Yara Elsayed Ahmed Jun 2023

Atomistic Assessment Of Drug-Phospholipid Interactions Consequent To Cancer Treatment: A Study Of Anthracycline Cardiotoxicity, Yara Elsayed Ahmed

Theses and Dissertations

Despite being one of the most effective chemotherapeutic agents developed to date, Anthracyclines are notorious for their cardiotoxicity. Their clinical use is frequently limited both in dosage and in prescription due to the severe cardiac damage they cause. The mechanism of anthracycline-induced cardiotoxicity is not yet fully understood. However, it is hypothesized that interactions with the myocardial membrane play an important role in imparting cardiotoxicity. In this study, we use molecular dynamics simulations and density functional theory calculations to study the anthracycline drug molecules and the interactions that they have with the myocardial membrane. We construct a myocardial membrane model …


Advances In Structure Elucidation Of Small Molecules And Peptides By Nuclear Magnetic Resonance Spectroscopy And Mass Spectrometry, Ryan D. Cohen May 2023

Advances In Structure Elucidation Of Small Molecules And Peptides By Nuclear Magnetic Resonance Spectroscopy And Mass Spectrometry, Ryan D. Cohen

Seton Hall University Dissertations and Theses (ETDs)

This dissertation reports on improvements in nuclear magnetic resonance (NMR) and mass spectrometry (MS) structure determination methods of organic compounds, with particular focus on challenging cyclic peptides. A recent and important innovation in NMR spectroscopy is the combination of theoretical property predictions, such as chemical shifts, using density functional theory (DFT) to aid in challenging NMR structure assignments, such as determination of regio- and stereo-configurations. In the first part of this thesis, a comprehensive benchmark study of DFT chemical shift prediction methods was performed using experimental NMR data collected from 50 well curated compounds, which was referred to as the …


Quantum Mechanical Studies Of Water Splitting Reaction With (Zno)3 Nanoclusters As Catalysts, Duwage C. Perera May 2023

Quantum Mechanical Studies Of Water Splitting Reaction With (Zno)3 Nanoclusters As Catalysts, Duwage C. Perera

Electronic Theses and Dissertations

With the current energy crisis, H2 production through the water-splitting reaction has drawn attention recently. In this thesis, I studied the structural (geometry) and electronic properties (vertical detachment energy and electron affinity) of ZnO monomers and dimers using density functional theory. ZnO is a metal oxide with a 3.37 eV band gap and can be a commercially cheaper photocatalyst in hydrogen (H2) production. The B3LYP/DGDZVP2 pair was selected after investigating different pairs of exchange functionals and basis sets to study the hydration, hydrolysis, and water-splitting reaction. The singlet-triplet energy gaps of small (ZnO)n clusters (n=1-6) of …


Nitroalkane Oxidase Inspired No-Transfer Agents, No Sensors, And The Computational Design Of Fluorescent Sensors, Thanh Thuy Thi Vuong May 2023

Nitroalkane Oxidase Inspired No-Transfer Agents, No Sensors, And The Computational Design Of Fluorescent Sensors, Thanh Thuy Thi Vuong

Chemistry & Biochemistry Dissertations

Flavin adenine dinucleotide and flavin mononucleotide are co-enzymes with biologically relevant redox potentials. They are involved in many chemical transformation processes in the biological system, such as one-electron and two-electron transfer reactions, dehydrogenase reactions, and intramolecular electron transfer reactions critical to cellular function. Their ability to be reoxidized under aerobic conditions has inspired us to investigate biomimetic transformations with their derivatives, especially in converting NO2 to NO. Besides that, a series of biosensors was designed and investigated to detect NO in the aqueous system. NO sensors were achieved with computational DFT calculations correctly predicting the fluorescence response.


Theory Of Aqueous Solvation: Uninterrupted, Cyclic Hydrogen-Bonding Essential For Accurate Keto-Enol Energies And Grotthuss Tautomerism Of Acetone, Mark Recznik Aug 2022

Theory Of Aqueous Solvation: Uninterrupted, Cyclic Hydrogen-Bonding Essential For Accurate Keto-Enol Energies And Grotthuss Tautomerism Of Acetone, Mark Recznik

Electronic Theses and Dissertations

Keto-enol tautomerization (KET) is a fundamental process impacting a range of molecular phenomena in organic and biochemistry. However, the accurate computation of solution-phase KET energies remains a challenge, even for prototypical acetone.

In Part I, keto-enol tautomers of acetone were incorporated into solvent clusters that interact via uninterrupted, cyclic hydrogen-bonding (UCHB) networks. An empirical model was created to predict accurate KET energies, Etaut, of simple carbonyl compounds. Based on the availability of experimental data and structural simplicity, acetone was selected as a prototype. A discrete-continuum strategy was employed – accounting simultaneously for local noncovalent interactions and bulk-phase effects …


Computational Materials Chemistry: From Polymer Precursors To Ceramics And High-Pressure Materials, Shariq Haseen Aug 2022

Computational Materials Chemistry: From Polymer Precursors To Ceramics And High-Pressure Materials, Shariq Haseen

Chemistry & Biochemistry Dissertations

With advances in computing power, the field of computational chemistry has flourished. Using current computational resources, atomistic simulations of billion atoms and trillions of atoms have been performed. Computational techniques can be used to support experimental investigations into new materials as well as independently predict the existence of new materials. Furthermore, computational techniques are becoming instrumental in investigations. This work is split into two parts. Part I focuses on high-pressure and materials chemistry. We investigate the cristobalite-rutile transformation for SiO2, GeO2, and TiO2, and predict conditions at which cristobalite-GeO2 and cristobalite-TiO2 may be synthesized (Chapter 1), we provide supporting calculations …


Insights Into Molecular Recognition And Reactivity From Molecular Simulations Of Protein-Ligand Interactions Using Md And Qm/Mm, Jerrano L. Bowleg May 2022

Insights Into Molecular Recognition And Reactivity From Molecular Simulations Of Protein-Ligand Interactions Using Md And Qm/Mm, Jerrano L. Bowleg

Theses and Dissertations

In this thesis, we have employed two computational methods, molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) MD simulations with umbrella sampling (US), to gain insights into the molecular mechanism governing the molecular recognition and reactivity in several protein-ligand complexes. Three systems involving protein-ligand interactions are examined in this dissertation utilizing well-established computational methodologies and mathematical modeling. The three proteins studied here are acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1). These enzymes are known to interact with a variety of ligands. AChE dysfunction caused by organophosphorus (OP) chemicals is a severe hazard since AChE is …


Structural Analysis Of [Ni(Dippe)] Fragment Using Computational Methods, Jennifer L. Sanchez May 2022

Structural Analysis Of [Ni(Dippe)] Fragment Using Computational Methods, Jennifer L. Sanchez

Theses and Dissertations

The structural analysis of the Nickel (Bisdiisopropylphospino)ethane, also known as [Ni(dippe)H]2, has been heavily studied in our group in collaboration with William D. Jones's group. A computational analysis of the [Ni(dippe)] fragment was performed to determine the structural relationship between the nickel center and its phosphine ligand, due to phosphines having both electronic and steric properties. The reactivity of the Nickel will be most dependent on the dippe ligand. A conformational search generated 244 conformers after a thorough minimization using Molecular Mechanic (MM) calculations where a thorough minimization was performed and then re-minimized using a SEED command until unique conformers …


Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath Mar 2022

Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath

LSU Doctoral Dissertations

The mechanisms of ambient-temperature reactions of heteroatomic compounds catalyzed by ceria (CeO2), an archetypical reducible oxide, for enzyme mimetics, environmental protection, and chemical synthesis are investigated in this dissertation using theoretical methods. CeO2 is modeled with thermodynamically stable low-index surfaces exposed by commonly studied ceria thin films and nano particles. To understand phosphatase-like dephosphorylation activity, stable adsorption states and surface reactions of model phosphates are examined. Binding of the central P-atom to surface lattice oxygen (Olatt) supplemented by phosphoryl O-Ce interaction is the only stable adsorption state for the un-dissociated molecule. Deprotonation of phosphate monoesters, …


Theoretical Investigation Of The Co-C Bond Activation In Methylcobalamin And Adenosylcobalamin-Dependent Systems: Mechanistic Insights., Arghya Pratim Ghosh Dec 2021

Theoretical Investigation Of The Co-C Bond Activation In Methylcobalamin And Adenosylcobalamin-Dependent Systems: Mechanistic Insights., Arghya Pratim Ghosh

Electronic Theses and Dissertations

The vitamin B12 derivates, otherwise known as cobalamin (Cbl), are ubiquitous organometallic cofactors. The biologically active forms of Cbl, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), act as cofactors in different physiological reactions for both prokaryotes and eukaryotes. A crucial aspect of the Cbl-mediated systems is the activation of the organometallic Co-C bond that plays a critical role in its catalytic activity. One of the most remarkable features of this Co-C bond is its unusual activation in AdoCbl-dependent enzymatic reactions, where a trillion-fold rate acceleration of the Co-C bond cleavage is observed inside the enzyme compared to the isolated …


Investigations Into Effects Of Modified Prolines On Cis-Trans Isomers And Polypeptide Secondary Structure & Prediction Of Spectroscopic Properties Of Phthalonitriles For Characterization, Jeffrey Raab May 2021

Investigations Into Effects Of Modified Prolines On Cis-Trans Isomers And Polypeptide Secondary Structure & Prediction Of Spectroscopic Properties Of Phthalonitriles For Characterization, Jeffrey Raab

Seton Hall University Dissertations and Theses (ETDs)

Proline is a unique amino acid because it is the only amino acid whose side chain wraps around and bonds back to the peptide backbone. This ring shape helps proteins form conformations which would otherwise not be possible such as hairpin turns. The cis/trans isomerization of the peptide bond between the preceding amino acid (Xaa) and Proline is important in determining how the secondary structure folds. Thus, being able to control the cis/trans isomerization is important when a specific conformation is desired; Proline can be modified to get make the equilibrium shift whichever way is needed. The modifications …


Investigation Of The C—Cn Bond Activation Of Fluorinated Benzonitriles With [Ni(Dmpe)] And Dft Benchmarking Study With [Ni(Dippe)], Dominique C. Gallegos May 2021

Investigation Of The C—Cn Bond Activation Of Fluorinated Benzonitriles With [Ni(Dmpe)] And Dft Benchmarking Study With [Ni(Dippe)], Dominique C. Gallegos

Theses and Dissertations

Carbon-carbon bond activation has become a rapidly growing area of research due to its extensive range of applications. Despite the significant progress that has been made in this field, the cleavage of kinetically inert and thermodynamically stable CC σ-bonds under mild homogeneous conditions remains a challenge. The activation is primarily limited to systems in which either relief of strain or aromatization serves as a driving force. A notable exception to this is the oxidative addition of unstrained CCN bonds of nitriles. In this study, we are looking at the effect of fluoro substituents. We hypothesized …


Computational Study Of Radical Cation Rearrangements, Mi'kayla D. Word Jan 2021

Computational Study Of Radical Cation Rearrangements, Mi'kayla D. Word

Theses and Dissertations

A radical cation is a molecule that has one unpaired electron that holds a positive charge. The unpaired electron within a radical cation causes the molecule to be reactive. The high reactivity of these species allows for radical cations to be commonly studied experimentally using mass spectrometry and other multi-mass imaging techniques. However, these methods often cannot resolve the reaction mechanisms for these fast reactions. Specifically, radical cation rearrangement mechanisms are particularly unresolved within experiments. For this reason, radical cation rearrangements are computationally investigated to explain complex reaction pathways for processes to understand reactions leading to the initiation of detonation …


Extension Of Restricted Open-Shell Kohn-Sham Methodology To A Density-Functional Tight-Binding Framework, Reuben Szabo Jan 2021

Extension Of Restricted Open-Shell Kohn-Sham Methodology To A Density-Functional Tight-Binding Framework, Reuben Szabo

WWU Graduate School Collection

The restricted open-shell Kohn-Sham (ROKS) approach for singlet excited states provides some advantages over the ∆-self-consistent-field (∆SCF) method, requiring only a single SCF procedure and avoiding the problem of variational collapse. While ROKS is a powerful tool for DFT, its application to density functional tight-binding (DFTB) could offer significant improvements in time complexity when compared to DFT, enabling excited-state simulations of extended molecular systems on longer timescales than ROKS. In this work we discuss the implementation of an RO-DFTB approach in the DFTB+ package, as well as its suitability for the study of organic dyes and photoactive compounds. For benchmarking, …


In Silico Investigation For The Conversion Of Methyl Oleate To Gasoline, Arkanil Roy Aug 2020

In Silico Investigation For The Conversion Of Methyl Oleate To Gasoline, Arkanil Roy

MSU Graduate Theses

Petroleum products are found in all walks of life. From the plastic casing on a cell phone to the gasoline that runs most vehicles, a lot is derived from petroleum. Ubiquitous use of petroleum has adversely affected the environment. Toxic substances such as SOx and NOx are released into the atmosphere during the processing and usage of petroleum products, which contributes to global warming. Inevitable oil spills cause devastating effects to marine ecosystems. The rate of regeneration of petroleum is much slower than the rate of usage that would lead to it being exhausted in the recent future. Hence, a …


Computational Quantum Study Of Intermediates Formed During The Partial Oxidation Of Melatonin, Oladun Oladiran May 2020

Computational Quantum Study Of Intermediates Formed During The Partial Oxidation Of Melatonin, Oladun Oladiran

Electronic Theses and Dissertations

Melatonin is a neurohormone produced by the pineal gland in the brain. It functions as an antioxidant to scavenge free radicals. Free radicals are reactive species; they often oxidize the cells leading to oxidative stress which may lead to severe health complications. Reaction of melatonin with free radicals is known to be stepwise, as such the stability of the intermediates can be examined. Thus, the possibility of using melatonin as an in vivo spin trap can be determined. Spin traps allow characterization of unstable radical species using electron spin resonance spectroscopy. In this research, ab initio quantum chemistry techniques were …


An Atomistic Study Of The Effects On Mechanical Properties And Bonding Interactions Of Carbon Nanofillers In Nylon 6 Nanocomposites, Michael Roth May 2020

An Atomistic Study Of The Effects On Mechanical Properties And Bonding Interactions Of Carbon Nanofillers In Nylon 6 Nanocomposites, Michael Roth

Dissertations

Polymers have potential for a wide range of applications. The effectiveness of polymers can be further enhanced through the addition of nanofillers that improve thermal, mechanical, and electrical properties of the polymer. Carbon based nanofillers such as carbon nanotube (CNT), graphene, and carbon nanofibre (CNF) are of particular interest due to their high properties and high aspect ratios. However, limited understanding of the governing interactions of these nanofillers with polymers limits the effectiveness of the final nanocomposite.

The first facet of this dissertation focuses on determining the dominating interactions between pristine CNT and graphene with nylon 6 monomer and the …


Computational Modeling Of Photolysis And Catalysis Reactions In Vitamin B12-Dependent Enzymes., Abdullah Al Mamun May 2020

Computational Modeling Of Photolysis And Catalysis Reactions In Vitamin B12-Dependent Enzymes., Abdullah Al Mamun

Electronic Theses and Dissertations

Vitamin B12 is a complex organometallic molecule, the derivatives of which such as adenosylcobalamin (AdoCbl) and methylcobalamin (CH3Cbl) act as a cofactor in numerous enzymatic reactions. These two biologically active cofactors contain a unique organometallic Co-C σ bond. Important feature of this Co-C bond is that it can be activated by both thermally and photolytically inside the enzymatic environment as well as in the solution. In the case of enzymatic reactions where AdoCbl molecule act as a cofactor, the cleavage of the Co-C bond constitutes the key catalytic step. The most intriguing features of this cleavage is …


Quantum Chemical Pka Estimation Of Carbon Acids, Saturated Alcohols, And Ketones Via Quantitative Structure-Activity Relationships, Corey Adam Baldasare Jan 2020

Quantum Chemical Pka Estimation Of Carbon Acids, Saturated Alcohols, And Ketones Via Quantitative Structure-Activity Relationships, Corey Adam Baldasare

Browse all Theses and Dissertations

Acid dissociation constants, often expressed as pKa values, afford vital information with regards to molecular behavior in various environments and are of significance in fields of organic, inorganic, and medicinal chemistry. Several quantitative structure-activity relationships (QSARs) were developed that correlate experimental pKas for a given class of compounds with a descriptor(s) calculated using density functional theory at the B3LYP/6-31+G** level utilizing the CPCM solvent model. A set of carbon acids provided a good final QSAR model of experimental aqueous pKas versus ΔEH2O (R2 = 0.9647) upon removal of three aldehydes as outliers. A study of saturated alcohols offered a final …


Exploration Of Nucleic Acid Hydrogran Bonding Using Molecular Mechanics And Dft Calculations, Simi Kaur Dec 2019

Exploration Of Nucleic Acid Hydrogran Bonding Using Molecular Mechanics And Dft Calculations, Simi Kaur

Biological Sciences

Many recent theoretical and experimental techniques have been developed to probe the structurefunction relationships of complex biomolecules. The roles of RNAs are dependent upon various intricate structural motifs and interactions, including hairpins, pseudoknots, long range territory contacts, bulges and internal loops, that are not easily captured by these methods. We had previously developed an enhanced replica exchange molecular dynamics method that incorporated secondary structure information in the form of distance restraints in order to effectively overcome kinetic barriers and sample conformational space. In several structures, restrained RNA base pairs near large bulges displayed a preference for stacking over hydrogen bonding …


Computational Design And Analysis Of Molecular Ethylene Oligomerization Catalysts, Doo Hyun Kwon Jun 2019

Computational Design And Analysis Of Molecular Ethylene Oligomerization Catalysts, Doo Hyun Kwon

Theses and Dissertations

Linear alpha olefins (LAOs) are key petrochemical precursors for the synthesis of larger polymers, detergents, plasticizers, and lubricants. Most catalytic ethylene oligomerization processes generate a wide distribution of LAO carbon chain lengths. A major ongoing industrial challenge is to develop homogeneous catalysts that result in selective and tunable ethylene oligomerization to 1-hexene and 1-octene alkenes. Quantum mechanical calculations coupled with rapidly advancing technology have enabled the ability to calculate small molecule systems with high accuracy. Employing computational models to advance from empirical to quantitative prediction of product selectivities has become an active area of exploration. In this work, we demonstrate …


Structure Modeling And Property Calculations Of Amorphous Materials, Ilia Ponomarev May 2019

Structure Modeling And Property Calculations Of Amorphous Materials, Ilia Ponomarev

Chemistry & Biochemistry Dissertations

The demand in discovery of novel materials for a seemingly infinite list of applications is growing year by year. Even though it’s not uncommon to find the application for the material after its discovery upon experimentally studying its properties, it can be essential to be able to build the material to satisfy the specific need. This kind of targeted development for a specific application requires deep understanding of the “synthesis => structure => properties” sequence, and this is why insights into the mechanisms of the synthesis, structure formation and structure vs. properties relations are highly desired. Structural insights can be …


Nmr Spectroscopic Properties Of Nucleotides, And A New Method Of Numeric Calculation Of Raman Intensities For Organic Molecules, William R. Ehrhardt Aug 2018

Nmr Spectroscopic Properties Of Nucleotides, And A New Method Of Numeric Calculation Of Raman Intensities For Organic Molecules, William R. Ehrhardt

MSU Graduate Theses

General and accurate computational methodologies are currently lacking for large chemical systems. This is primarily due to the computational expense required to perform calculations on systems with one hundred or more atoms. Calculated spectroscopic properties could aid in the process of elucidating structural features of large biologically relevant molecules if accurate and inexpensive methods are developed. Towards this end the first steps were taken to design a general methodology for predicting NMR chemical shifts of large nucleic acid systems. It was found that HF and semi-empirical methods were not sufficient for optimization of nucleobases, and therefore larger nucleotide or nucleic …


Computational Study Of Lawesson’S Reagent Mediated Fluorenone Dimerization Forming 9,9’-Bifluorenylidene, Andrew Jourdan Eckelmann May 2018

Computational Study Of Lawesson’S Reagent Mediated Fluorenone Dimerization Forming 9,9’-Bifluorenylidene, Andrew Jourdan Eckelmann

MSU Graduate Theses

The ambition of this work is to start a path to the a priori rational design of high yield production for electron acceptors with finely tuned band gaps, from the comfort of an armchair. To this end, organic photovoltaics offer a cheap and sustainable means of manufacture using readily available materials and avoids the toxicity of some of the heavy metals used in first and second-generation solar cells such as cadmium. The microwave assisted Lawesson’s reagent mediated one-pot one-step solventless synthesis takes less than 3 minutes and results in an 84% yield of 9,9’-bifluorenylidene from two equivalents of fluorenone. While …


Computational Modeling Of Electronically Excited States In Cobalamin-Dependent Reactions., Brady D. Garabato May 2018

Computational Modeling Of Electronically Excited States In Cobalamin-Dependent Reactions., Brady D. Garabato

Electronic Theses and Dissertations

The current understanding of the photolytic properties of Vitamin B12 derivatives or cobalamins are summarized from a computational point of view. The focus is on two non-alkylcobalamins, cyanocobalamin (CNCbl) and hydroxocobalamin (HOCbl), two alkylcobalamins, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), as well as the stable cob(II)alamin radical. Photolysis of alkylcobalamins involves low-lying singlet excited states where photo-dissociation of the Co-C bond forms singlet-born alkyl/cob(II)alamin radical pairs (RPs). Potential energy surfaces (PESs) of low-lying excited states as functions of both axial bonds provide the most reliable tool for analysis of photochemical and photophysical properties. Due to the size limitations associated with the …


Characterization Of Polymers Containing Ferrocene And Imidazole With Density Functional Theory, Eric Mullins Apr 2018

Characterization Of Polymers Containing Ferrocene And Imidazole With Density Functional Theory, Eric Mullins

Electronic Theses & Dissertations

Electrochemical and UV-Vis studies on these polymers in the presence of aqueous solutions containing metal ions have revealed significant modifications in the electrochemical properties and absorption spectra. These modifications in electrochemical properties could be attributed to the ability of the imidazole to coordinate with metal ions, increasing its electron deficiency and enhancing oxidization of the nearby ferrocene moiety if it is in close proximity with imidazole. However, the mechanism of interaction between the imidazole and metal ions, as well as the equilibrium geometry of the resulting polymer-metal ion complex is unknown.

In this thesis, density functional theory (DFT) was used …