Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Controlling Polymer Molecular Structure And Morphology: From Illumination Of Conjugated Polymers To Polymer Chain Depolymerization, Josh Moncada Dec 2022

Controlling Polymer Molecular Structure And Morphology: From Illumination Of Conjugated Polymers To Polymer Chain Depolymerization, Josh Moncada

Doctoral Dissertations

Polymers remain a prominent component of our lives, and finding methods to control their structure or morphology are needed to tune material properties. This dissertation reports methods to alter the conformation, morphology, or structure of polymeric materials. Chapter two describes the impact of exposure to white light during annealing of conjugated polymer blends on their morphology and optoelectronic performance. The observed changes in the morphology correlate strongly to the variation in photoluminescence (PL) with illumination, including that the PL varies less with illumination at higher Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] loadings, offering foundational understanding to guide the structure and optoelectronic performance of conjugated polymer …


Simplified Synthesis Of Conjugated Polymers Enabled Via 1,4-Dihydropyrrolo[3,2-B]Pyrrole, Kenneth-John Jack Bell Apr 2022

Simplified Synthesis Of Conjugated Polymers Enabled Via 1,4-Dihydropyrrolo[3,2-B]Pyrrole, Kenneth-John Jack Bell

Master of Science in Chemical Sciences Theses

Conjugated polymers have attracted significant attention as the active layer material in organic electronics, such as organic photovoltaics and light-emitting diodes, partly due to the ability to influence a broad range of properties through structural design motifs. However, high performance conjugated polymers suffer from numerous synthetic steps, generation of toxic waste, and harsh reaction conditions all of which impart additional costs that inhibit their widespread utilization. Therefore, an emphasis on reducing synthetic complexity and utilizing abundant, commercially available starting materials is needed for organic electronics to reach their full potential. Dihydropyrrolo[3,2-b]pyrrole (H2DPP) chromophores offer a simple one-pot synthesis …