Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Theses/Dissertations

Nanoparticle

Institution
Publication Year
Publication

Articles 1 - 30 of 38

Full-Text Articles in Entire DC Network

Remote Ambient Aerosols Found In The Southern Great Plains And Eastern North Atlantic: A Comprehensive Analysis Of Optical Behavior And Aerosol-Cloud Interaction, Daniel J. Bonanno Jan 2023

Remote Ambient Aerosols Found In The Southern Great Plains And Eastern North Atlantic: A Comprehensive Analysis Of Optical Behavior And Aerosol-Cloud Interaction, Daniel J. Bonanno

University of the Pacific Theses and Dissertations

The data presented in this thesis showcases the investigation of various aerosol types and the role they play in the hydrological system and global climate models. Long-range transport aerosols, including atmospheric soot, mineral dust, and ammonium sulfate, in addition to near-site sources such as secondary organic aerosols (SOAs), sea spray, aliphatic hydrocarbons, and other organics, are prioritized in the analysis of two separate remote field studies. Each of these campaigns revealed the juxtaposition between dry summer months and wet winter months, and the connection between seasonal variability and sample collection. Two spectromicroscopic techniques were used to elucidate chemical composition, morphology …


Development Of Optical Nanomaterial For Enhanced Cerenkov Imaging, Qize Zhang Jun 2022

Development Of Optical Nanomaterial For Enhanced Cerenkov Imaging, Qize Zhang

Dissertations, Theses, and Capstone Projects

Cancer is a significant public health problem worldwide and is the second leading cause of death in the United States. Imaging has increasingly been used over the last two decades to improve the diagnosis and guidance of tumor tissue removal surgery. Among the most widely used techniques for in vivo imaging are planar and tomographic fluorescence imaging and bioluminescence imaging. Despite their utility, these techniques are primarily restricted to preclinical use. Factors that have prevented translation from the bench to the bedside include depth-penetration considerations, regulatory issues, and toxicity. A recent development in nuclear imaging has been the ability to …


Targeting Platelets Using Ionic Liquid Coated Nanoparticles, Karen Mun Wong Apr 2022

Targeting Platelets Using Ionic Liquid Coated Nanoparticles, Karen Mun Wong

Honors Theses

Platelets are key players in our body’s inflammatory processes upon activation, which can create physiological problems. Researchers are actively seeking solutions by targeting platelets with therapeutics. The objective of the research in this thesis was to investigate a new and potentially less invasive drug delivery platform using nanoparticles. The topic of the project was to explore the world of ionic liquids and their abilities, when coated on nanoparticles, to bind to platelets. A library of choline carboxylic acid-based ionic liquids (ILs) was first synthesized via salt metathesis while PLGA-based nanoparticles were simultaneously being synthesized via the nanoprecipitation method. The ionic …


Establishing The Relative Composition Of Functionalized Thiols In Mixed Ligand Gold Nanoparticles By 1h-Nmr Spectroscopy, Matthias Carroll Jan 2022

Establishing The Relative Composition Of Functionalized Thiols In Mixed Ligand Gold Nanoparticles By 1h-Nmr Spectroscopy, Matthias Carroll

All Master's Theses

Functionalized gold nanoparticles (AuNPs) are of interest for their optical and electrical properties, specifically the surface plasmon resonance phenomenon and potential applications for medicine and nano-circuitry. In this study, the ligand composition of small (~5 nm diameter) thiol functionalized AuNPs with mixed ligand monolayers was investigated to better understand how the molar feed ratio of ligands used during their synthesis influences the composition of ligands on the particle’s surface. The system under study was a combination of two ω-functionalized thiols, mercapto ethoxy ethoxy ethanol (MEEE) and mercapto pentyl trimethyl ammonium chloride (MPTMA). UV/Visible spectrophotometry, dynamic light scattering, and electron …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


Computational Investigation Of Nanoparticle Immersion And Selfassembly, Tara Allison Tyler Nitka Aug 2021

Computational Investigation Of Nanoparticle Immersion And Selfassembly, Tara Allison Tyler Nitka

Open Access Theses & Dissertations

Both neutral and charged nanoparticles with a variety of compositions, shapes, and sizes have beenpreviously prepared. These nanoparticles have been demonstrated to self-assemble into a variety of superlattices and binary superlattices both in bulk solution and at surfaces of solutions, and the structures formed by self-assembly have been shown to depend on nanoparticle chemistry and charge as well as on whether assembly takes place at a surface or in bulk. Furthermore, the prepared isolated and self-assembled nanoparticles have a number of biomedical, nanotechnology, and industrial applications. In this Dissertation, I present my research on three general topics. First, I will …


A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare Mar 2021

A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare

LSU Doctoral Dissertations

Shale oil reservoirs are prolific on the short term due to hydraulic fracturing and horizontal drilling but experience significant production decline, leading to poor ultimate recovery and leaving billions of barrels of oil buried in the ground. In this study, a systematic multi-scale investigation of an enhanced oil recovery (EOR) process using relatively inexpensive silicon dioxide nanoparticles and carbon dioxide for shale oil reservoirs was conducted. Using the Tuscaloosa Marine Shale (TMS) as a case study, aqueous dispersions of nanosilica in conjunction with CO2 were investigated at nano-to-core scales. At the nanoscale, atomic force microscope was used to investigate …


Towards Machine Learning In Chemical Sensing : Milk Differentiation And Quality Control Through Two-Dimensional Nano-Sensor Array, Yu Sheng Chen Jan 2020

Towards Machine Learning In Chemical Sensing : Milk Differentiation And Quality Control Through Two-Dimensional Nano-Sensor Array, Yu Sheng Chen

Legacy Theses & Dissertations (2009 - 2024)

Herein, we developed a novel artificial tongue using machine learning and 12 nanoassemblies (2D-NAs) to identify and analyzed different kinds of milk beverages for quality control. This biomimetic sensor array was trained to “taste” different milk types as an “artificial tongue” which is the first time we demonstrated that this sensor array can be implemented to complex systems. Two-dimensional nanoparticles (2D-nps) and nine fluorescently labeled single stranded oligonucleotides (ssDNA) with different length and nucleobases were assembled to create 12 2D-NAs. The artificial tongue was deployed to identify and analyze five milk types. All five milk types were discriminated with 95% …


Life Cycle Studies To Evaluate The Physiological And Biochemical Effects Of Copper Oxide And Surface-Coated Titanium Dioxide Nanoparticles On Green Onion (Allium Fistulosum) And Carrot (Daucus Carota L.) Plants: Insights Utilizing Two-Photon Microscopy And Spectroscopy, Yi Wang Jan 2020

Life Cycle Studies To Evaluate The Physiological And Biochemical Effects Of Copper Oxide And Surface-Coated Titanium Dioxide Nanoparticles On Green Onion (Allium Fistulosum) And Carrot (Daucus Carota L.) Plants: Insights Utilizing Two-Photon Microscopy And Spectroscopy, Yi Wang

Open Access Theses & Dissertations

With the recent increase of nanomaterial production, nano copper oxide (nCuO) and surface-modified titanium dioxide nanoparticles (nTiO2) are among the most widely applied nanoparticles in industry and daily lives. Their use has resulted in accumulation in soils as a consequence of their direct or indirect release. Hence, these NPs may raise a potential risk to crops cultivated in soils. Moreover, the physiological effects of nCuO on green onion (Allium fistulosum) and surface-coated nTiO2 on full-grown carrot (Daucus carota L.) are still unknown. Green onion is characterized by its high content of the antioxidant allicin, and carrot is a worldwide economic …


Organically Modified Inorganic Nanoparticles For Halochromic Ionophores And Nucleic Acids, William Johnston Aug 2019

Organically Modified Inorganic Nanoparticles For Halochromic Ionophores And Nucleic Acids, William Johnston

Doctoral Dissertations

In this dissertation, four nanoparticle reaction schemes were developed as substrates for halochromic dyes or nucleic acids. The reaction schemes include the use of two substrates: silica nanoparticles and halloysite nanotubes. The protocols can incorporate silica (SiO2) nanoparticles and halloysite aluminosilicate (AlO2SiO2) nanotubes due to the presence of silane groups on the surface of either substrate. The reaction schemes are presented along with detailed protocols which were written to facilitate both reproducibility and to serve as an aid to further study and for easy modification of the protocol to suit a researcher's needs. The data is discussed in the materials …


Synthesis Of New Aliphatic Pseudo-Branched Polyester Co-Polymers For Biomedical Applications, Zachary Shaw Jul 2019

Synthesis Of New Aliphatic Pseudo-Branched Polyester Co-Polymers For Biomedical Applications, Zachary Shaw

Electronic Theses & Dissertations

In this study, a hyperbranched polyester co-polymer was designed using a proprietary monomer and diethylene glycol or triethylene glycol as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by p-Tolulenesulfonic acid. The progress of the reaction was monitored with respect to time and negative pressure, with samples being subjected to standard characterization protocols. The resulting polymers were purified using the solvent precipitation method and characterized using various chromatographic and spectroscopic methods including GPC, MALDI-TOF, and NMR. We have observed polymers with a molecular weight of 29,643 kDa and 33,996 kDa, which is ideal to be …


Nanoparticles With Tunable Fluorophobic Effect Towards Multimodal Coassembly With Block Copolymers, Zachary Michael Marsh Apr 2019

Nanoparticles With Tunable Fluorophobic Effect Towards Multimodal Coassembly With Block Copolymers, Zachary Michael Marsh

Theses and Dissertations

Nanomaterials are often fabricated using block polymers to direct the placement of nanoparticles via selective intermolecular interactions such as hydrogen bonding. Fluorophobic interactions have emerged as a promising handle to control nanoparticle placement independently from typical hydrophilic approaches. A series of nanoparticles with tunable fluorophobicity were prepared to elucidate the key parameters for harnessing fluorophobic interactions in this context. Mixed ligand fluorinated nanoparticles (ML-FNPs) where prepared to examine the competing roles of each ligand towards fluorophobicity and solubility. The ML-FNP intermolecular interactions were first studied using a custom-made Quartz Crystalline Microbalance (QCM) based technique. The ML-FNPs were then examined for …


Interfacial Ligand Dynamics And Chemistry On Highly Curved Nanoparticle Surfaces: A Plasmon-Enhanced Spectroscopic Study, Esteban Villarreal Apr 2019

Interfacial Ligand Dynamics And Chemistry On Highly Curved Nanoparticle Surfaces: A Plasmon-Enhanced Spectroscopic Study, Esteban Villarreal

Theses and Dissertations

The dynamic interactions between capping ligands and nanoparticle surfaces play a critical role in guiding shape-controlled nanocrystalline growth, imparting unique physical and chemical properties to the nanoparticles. It has been well established that nanoparticles within the size regime of sub 5 nm possess unique heterogeneous catalytic properties, while sub wavelength metallic nanoparticles exhibit tunable plasmonic activity, when these properties are integrated into a single nanoparticle, it presents a significant opportunity to monitor, in real time, the molecular transformations associated with interfacial interactions at the nanoparticle surface. Using plasmon-enhanced Raman scattering as an ultrasensitive spectroscopic tool combining molecular fingerprinting with time …


A Dual Nanostructured Approach To Sers Amenable To Large-Scale Production, Kory Brian Castro Apr 2019

A Dual Nanostructured Approach To Sers Amenable To Large-Scale Production, Kory Brian Castro

Chemistry & Biochemistry Theses & Dissertations

A SERS device was made using a dual-nanostructured surface comprised of silver nanoparticle and silver nanowires. The ability of each nanostructure to produce a uniform surface was characterized and the surface-enhanced Raman scattering (SERS) response of the resulting surfaces were examined using the reporter molecule 4-aminothiolphenol (ATP) and a 638 nm excitation laser.

A synthetic method was developed to produce silver nanowires with lengths of ~20 μm and diameters of ~100 nm with a narrow size distribution. The method utilized a simple, one-pot synthesis that is amenable to large-scale production. A selective precipitation method was used to the isolate the …


Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir Jan 2018

Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir

Legacy Theses & Dissertations (2009 - 2024)

Nucleic acid technology along with vast variety of nanomaterials has demonstrated a great potential in many applications from biosensing studies to molecular diagnostics, from biomedical and bioanalytical research to environmental analysis. Especially short single stranded (ss) DNA molecules, called oligonucleotides, are extraordinary biopolymers featuring diverse functionality on the nanoparticles thanks to their high degree of programmability, target-specific binding or cleavage, molecular recognition ability, structure-switching capability, and unique interactions at the bio-nano interfaces. Among those, there have been many biosensing applications utilizing ss DNAs and numerous nanomaterials through various detection techniques such as fluorometric, colorimetric or electrochemical methods. Although many groundbreaking …


Studies Of Polyacrylate Based Nanoparticle Emulsions, Faeez Mahzamani Nov 2017

Studies Of Polyacrylate Based Nanoparticle Emulsions, Faeez Mahzamani

USF Tampa Graduate Theses and Dissertations

Self-stabilizing polyacrylate nanoparticle emulsions were previously investigated in the Turos laboratory, and provided a new model for delivering antibiotics via encapsulation or covalent binding of the desired bioactive compound within the polymer nanoparticles. The method used the in water, free radical emulsion polymerization of butyl acrylate/styrene mixture to form the polymer chain stabilized with a surfactant. Current research in this dissertation further explores the versatility of related nanoparticle emulsion systems. Chapter 2 provides an overview of the loading of certain therapeutic drugs, such as 5-aminosalicylic acid and derivatives thereof, for the treatment of irritable bowel syndrome. Chapter 3 explores homo-polymer …


Nanoparticle-Based Drug-Delivery Systems Studied By Second Harmonic Generation, Raju Ram Kumal Aug 2017

Nanoparticle-Based Drug-Delivery Systems Studied By Second Harmonic Generation, Raju Ram Kumal

LSU Doctoral Dissertations

Second harmonic generation (SHG) is used to study different types of colloidal nanoparticle drug-delivery systems. The surface charge density, electrostatic surface potentials, and ion adsorptions of 50 nm colloidal gold nanoparticle samples coated with mercaptosuccinic acid are determined using SHG measurements under varying NaCl and MgCl2 concentrations in water. Numerical solutions to the spherical Poisson-Boltzmann equation are fit to the SHG results to account for the nanoparticle surface curvature and ion adsorption to the Stern layer interface, showing excellent agreement with electrophoretic mobility measurements. In another study, nanoparticles of gold, silver and polystyrene are functionalized with microRNA using a …


Liposome-Coated Magnesium Phosphate Nanoparticle For Delivery Of Cytochrome C Into Lung Cancer Cells A549, Weizhou Yue Jan 2017

Liposome-Coated Magnesium Phosphate Nanoparticle For Delivery Of Cytochrome C Into Lung Cancer Cells A549, Weizhou Yue

University of the Pacific Theses and Dissertations

Proteins are large biomolecules that have great therapeutic potential in treating many human diseases. However, chemical/enzymatic degradation, denaturation, and poor penetration into cells are some of the challenges for clinical use of intracellular proteins.

Previously, our group has developed cationic lipid-coated magnesium phosphate nanoparticle (LP MgP NP-CAT) formulations to enhance the intracellular delivery of the negatively charged protein catalase. The goal of the current research is to develop a formulation to deliver cytochrome c (CytC), a positively charged protein into lung cancer cells A549. Specifically, this thesis research prepares and tests liposome-coated magnesium phosphate nanoparticle for delivery of cytochrome c …


Electrochemical Nanoprobes For Electron Transfer Kinetics And Electrocatalysis Study, Yun Yu Sep 2016

Electrochemical Nanoprobes For Electron Transfer Kinetics And Electrocatalysis Study, Yun Yu

Dissertations, Theses, and Capstone Projects

The studies of electrochemical processes on the nanoscale have led to a significant progress in understanding of electrochemical mechanisms and characterization of nanomaterials in the fields of energy, catalysis, and biological research. Electrochemical experiments at nanoscale require the fabrication and characterization of nanometer-sized electrochemical probes. The main advantages of the nanoprobes include very fast mass-transfer rate, high signal-to-noise ratio and extremely fine spatial resolution of electrochemical imaging. In the course of my Ph.D. research, different types of electrochemical probes were developed for measuring electron-transfer kinetics, probing single catalytic nanoparticles and sampling ultra-small volume of liquids.

We developed methodologies to fabricate …


Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han Apr 2016

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han

Chemistry & Biochemistry Theses & Dissertations

In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. Chapter 2 describes the influence of resorcinarene surfactants functionalized with amine- and thiol- headgroups in determining the morphology of monometallic Pt nanoparticles synthesized via the Brust-Schiffrin reaction. We found that while resorcinarene benzylthiol can lead to the formation of highly branched Pt nanostructures, resorcinarene amine can lead to the formation of anisotropic crystalline Pt nanoparticles. Further, we have evaluated the influence of resorcinarene ligands in determining the catalytic activity of these …


The Synthesis And Characterization Of Ferritin Bio Minerals For Photovoltaic, Nanobattery, And Bio-Nano Propellant Applications, Trevor Jamison Smith Jul 2015

The Synthesis And Characterization Of Ferritin Bio Minerals For Photovoltaic, Nanobattery, And Bio-Nano Propellant Applications, Trevor Jamison Smith

Theses and Dissertations

Material science is an interdisciplinary area of research, which in part, designs and characterizes new materials. Research is concerned with synthesis, structure, properties, and performance of materials. Discoveries in materials science have significant impact on future technologies, especially in nano-scale applications where the physical properties of nanomaterials are significantly different than their bulk counterparts. The work presented here discusses the use of ferritin, a hollow sphere-like biomolecule, which forms metal oxo-hydride nanoparticles inside its protein shell for uses as a bio-inorganic material.Ferritin is capable of forming and sequestering 8 nm metal-oxide nanoparticles within its 2 nm thick protein shell. A …


Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder May 2015

Synthesis And Characterization Of Support-Modified Nanoparticle-Based Catalysts And Mixed Oxide Catalysts For Low Temperature Co Oxidation, Andrew Justin Binder

Doctoral Dissertations

Heterogeneous catalysts are responsible for billions of dollars of industrial output and have a profound, if often understated, effect on our everyday lives. New catalyst technologies and methods to enhance existing catalysts are essential to meeting consumer demands and overcoming environmental concerns. This dissertation focuses on the development of catalysts for low temperature carbon monoxide oxidation. CO [carbon monoxide] oxidation is often used as a probe reaction to test overall oxidation activity of a given catalyst and is an important reaction in the elimination of toxic pollutants from automotive exhaust streams. The work included here presents three new heterogeneous catalysts …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …


Surface Functionalization Of Inorganic Substrates With Polymeric Ligands Using Raft Polymerization, Anand Viswanath Dec 2014

Surface Functionalization Of Inorganic Substrates With Polymeric Ligands Using Raft Polymerization, Anand Viswanath

Theses and Dissertations

This work focused on using polymers to modify the surface of various inorganic substrates, ranging from TiO2, ITO, CDSe and CdS nanostructures to micron sized silica particles. The synthesis of the polymers using the RAFT technique and the characterization of the functionalized substrates were analyzed in detail to provide insights into their use for various applications. In the first part of this work, novel phosphate based RAFT agents and phosphate containing polymers, including poly(methyl methacrylate) (PMMA), poly(glycidyl methacrylate) (PGMA) and poly(dimethyl siloxane) (PDMS) were synthesized. Alkyne functionalized PGMA was used to click to ITO surfaces in a grafting-to method, and …


Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro Feb 2014

Property Enhancements Of Dielectric Nanoparticles Via Surface Functionalization, Andrew Byro

Dissertations, Theses, and Capstone Projects

This thesis describes the surface modification of barium strontium titanate nanoparticles for use in polymer/ceramic composite thin film capacitors with resultant improved dielectric and film-making properties. Phosphonic acid-type ligands proved to be most effective for surface conjugation to the surface of the barium strontium titanate nanoparticles. Amine-terminated ligands proved to be effective at removing surface adsorbed water before being almost entirely removed during the sample washing stage. Carboxylic acid terminated ligands proved to adhere less well to the nanoparticle than the phosphonic acid, but resulted in thin films with a higher dielectric constant, which was more stable in the measured …


Soil And Biosolid Nano- And Macro-Colloid Properties And Contaminant Transport Behavior, Jessique L. Ghezzi Jan 2014

Soil And Biosolid Nano- And Macro-Colloid Properties And Contaminant Transport Behavior, Jessique L. Ghezzi

Theses and Dissertations--Plant and Soil Sciences

Despite indications that they are potential contaminant transport systems and threats to groundwater quality, very little effort has been invested in comparing contaminant transport behavior of natural environmental nanocolloids and their corresponding macrocolloid fractions in the presence of As, Se, Pb, and Cu contaminants. This study involved physico-chemical, mineralogical, stability and contaminant-transport characterizations of nano- (< 100 nm) and macro-colloids (100-2000 nm) fractionated from three Kentucky soils and one biosolid waste. Particle size was investigated with SEM/TEM and dynamic light scattering. Surface reactivity was estimated using CEC and zeta potential. Mineralogical composition was determined by XRD, FTIR, and thermogravimetric analyses. Sorption isotherms assessed affinities for Cu2+, Pb2+, AsO3-, and SeO4-2 contaminants, while settling kinetics experiments of suspensions at 0, 2 and 10 mg/L contaminants determined stability and transportability potential. Undisturbed 18x30 cm KY Ashton Loam soil monoliths were also used for …


The Design And Synthesis Of Magnetic Nanocomposites, Daniel Hudgins Dec 2013

The Design And Synthesis Of Magnetic Nanocomposites, Daniel Hudgins

Theses and Dissertations

Magnetism lies at the core of modern technology and can be found in industries such as oil refining, automotive, telecommunications, personal electronics, and power generation that are integral to our day to day lives. This permeation into everyday life has been enhanced in the past several decades with improvements in material design based upon the principles of nanotechnology leading to smaller, faster, and more efficient devices. The presented research will discuss the synthesis and processing of multiple magnetic nanoparticle structures designed for the enhancement of various, application specific, properties. In the first experiments a tunable core/shell structure was developed with …


Nanoparticles And Polymer Crystallization Kinetics In Hybrid Electronic Devices, Taylor William Wagner Dec 2013

Nanoparticles And Polymer Crystallization Kinetics In Hybrid Electronic Devices, Taylor William Wagner

Master's Theses

Conjugated semi-conducting polymers have become well known for their potential applications in hybrid electronic devices like solar cells, LEDs, and organic displays. These hybrid devices also contain inorganic nanoparticles, which complement the polymer when they are combined into the same layer. Control over the conformation and crystallinity of the polymer is critical for device performance, yet not much is known about the effect that these nanoparticles have on the polymer. Here, zinc oxide nanowire was surface modified with mono-substituted-carboxylic acid tetraphenylporphyrin and dodecanethiol, and introduced to poly(3-hexyl thiophene) in solution. The electron transfer, kinetics, and thermodynamics of this system were …


Synthesis Of Isotopologues And Nanoparticles For Hyper Raman Spectroscopy, Burton K. Mandrell May 2013

Synthesis Of Isotopologues And Nanoparticles For Hyper Raman Spectroscopy, Burton K. Mandrell

Chancellor’s Honors Program Projects

No abstract provided.


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore …