Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Food Waste Storage Gaseous Emissions Detection And Quantification Using Infrared Spectroscopy, Ryley A. Burton-Tauzer Jan 2023

Food Waste Storage Gaseous Emissions Detection And Quantification Using Infrared Spectroscopy, Ryley A. Burton-Tauzer

Cal Poly Humboldt theses and projects

A growing interest in sustainable waste management and the implementation of new policies have prompted a shift towards alternative resource recovery methods for organic waste, including food waste. To effectively assess alternative food waste treatment scenarios, it is important to evaluate the life cycle impacts associated with each scenario. The storage phase of food waste, encompassing its accumulation in kitchens, and storage in bins for collection and transportation, has been overlooked as a source of greenhouse gases in previous studies. This investigation aimed to identify the greenhouse gases emitted during the initial five-day period of low-oxygen storage. An open dynamic …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Comparison Of Calculated Normal Mode Molecular Vibrations With Experimental Gas-Phase Infrared Spectroscopy, Anila Renis Sutar Jan 2021

Comparison Of Calculated Normal Mode Molecular Vibrations With Experimental Gas-Phase Infrared Spectroscopy, Anila Renis Sutar

Dissertations and Theses

Computational vibrational spectroscopy serves as an important tool in the interpretation of experimental infrared (IR) spectra. Analysis of computational results provides a perspective over broader wavelength ranges and at higher precision. Although there are issues regarding accuracy, this can be approximated by using a scaling factor. High-resolution gas-phase FTIR spectroscopy at a resolution of 0.125 cm-1 can partially resolve rovibrational transitions in the P, Q, and R bands and therefore identify fundamental frequencies with approximately 1 cm-1 precision.

This research has compared high-resolution gas-phase FTIR absorption peaks to calculated vibrational frequencies. In the calculation of normal mode frequencies, …


Spectroscopic Signatures Of Uranium Speciation For Forensics, Nicholas Wozniak May 2017

Spectroscopic Signatures Of Uranium Speciation For Forensics, Nicholas Wozniak

UNLV Theses, Dissertations, Professional Papers, and Capstones

Chemical speciation offers opportunities for development of signatures that arise from the production, conversion, and aging processes of nuclear materials. This information has been useful for environmental science and remediation and the ability to measure chemical signatures, from processed materials may be of great use to nuclear forensics. Many nuclear forensics analyses deal with radiochronometry and isotopic analysis, but because processing is chemical in nature, there are opportunities for chemical signatures from the bulk products, reagents, or reaction intermediates to be measured.

Many spectroscopic techniques can be utilized in a remote setting outside of the laboratory, with minimal or no …


Real-Time Spectroscopic Analysis Of Microalgal Adaptation To Changing Environmental Conditions, Robert Ked Byrd Aug 2015

Real-Time Spectroscopic Analysis Of Microalgal Adaptation To Changing Environmental Conditions, Robert Ked Byrd

Masters Theses

Increases in anthropogenic pollution are causing many environmental problems; understanding their impact on the environment has become an important issue. Industrialization and the burning of fossil fuels have caused increased levels of carbon dioxide to enter the atmosphere, which is contributing to global warming and ocean acidification. Agricultural runoff has caused levels of inorganic nitrogen and phosphorus to rise, where they have been noted to cause harmful algal blooms. Marine ecosystems have been particularly affected as both of these forms of pollution accumulate in bodies of water. Microalgae are important organisms in these ecosystems because they sequester these pollutants and …


A Novel Approach To Assess Environmental Changes In Marine Ecosystems Via Spectroscopic Analyses Of Microalgae, Rebecca Burke Horton May 2012

A Novel Approach To Assess Environmental Changes In Marine Ecosystems Via Spectroscopic Analyses Of Microalgae, Rebecca Burke Horton

Doctoral Dissertations

Chemical analyses for environmental monitoring encounter many challenges which are imposed by a multitude of chemically complex and interrelated processes. For such investigations, innovative analytical methodologies must be developed which characterize chemical shifts of key environmental parameters in order to deduce insights into their ecological relevance. This dissertation is driven by an analytical chemistry perspective to develop chemical sensing techniques with the ultimate goal of gaining a deeper understanding of environmental changes and their chemical origins.

In order to overcome limitations inherent to any chemical sensor designed for a specific task, new paths are pursued which are based on the …


Non-Thermal Plasma Inactivation Of Bacillus Amyloliquefaciens Spores, Yaohua Huang Aug 2011

Non-Thermal Plasma Inactivation Of Bacillus Amyloliquefaciens Spores, Yaohua Huang

Masters Theses

Bacterial spores have remarkable resistance to a variety of harsh conditions, causing spoilage in food industry and becoming the primary bacterial agent in biowarfare and bioterrorism. In this study, inactivation mechanisms of Bacillus amyloliquefaciens (BA) spores by non-thermal plasma (NTP) were investigated by using Fourier-transform infrared spectroscopy (FTIR) as a major tool to exam spores after NTP treatment. Chemometric techniques, such as multivariate classification models based on soft independent modeling of Class Analogy (SIMCA) and Principal Component Analysis (PCA), were employed to identify functional group changes in FTIR spectra. The IR absorbance bands correlated to dipicolinic acid (DPA) decreased after …


Forensic Analysis Of Automobile Paints By Atomic And Molecular Spectroscopic Methods And Statistical Data Analyses, Erin Mcintee Jan 2008

Forensic Analysis Of Automobile Paints By Atomic And Molecular Spectroscopic Methods And Statistical Data Analyses, Erin Mcintee

Electronic Theses and Dissertations

The analysis of 110 automotive paint samples was conducted for the research presented here. Laser-induced breakdown spectroscopy (LIBS) was the central instrument utilized for analysis although scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) and Fourier transform infrared spectroscopy - attenuated total reflection (FTIR-ATR) analyses were also performed. Two separate methods of LIBS analysis of samples were used: a cross sectional analysis and a drill down analysis. SEM/EDS analysis focused on the cross section while FTIR-ATR analysis concentrated on the clearcoat layer. Several different data/statistical analyses were evaluated including principal components analysis (PCA), two tailed t-tests based on several …


Magnetic Nanoparticles Based On Iron: Synthesis, Characterization, Design, And Application, Michael David Shultz Jan 2008

Magnetic Nanoparticles Based On Iron: Synthesis, Characterization, Design, And Application, Michael David Shultz

Theses and Dissertations

Magnetic nanoparticles are of great interest for a wide range of applications. This work has focused on three primary forms of iron based nanoparticles and combinations thereof: α-iron, iron oxide, and iron carbide or cementite. The synthesis of several core-shell particles including cementite-iron oxide, α-iron-cementite, and α-iron-iron oxide was accomplished through reverse micelle routes and high temperature decomposition of iron pentacarbonyl in various media. Structural analysis to confirm the structures was performed using extended x-ray absorption fine structure (EXAFS) techniques. A rapid characterization technique was developed utilizing a correlation between Fourier transform infrared spectroscopy and EXAFS to determine the full …