Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

The Use Of Sodium Persulfate In Hydraulic Fracturing Fluids: A Degradation Study Based On Furfural, Katherine Elizabeth Manz Aug 2016

The Use Of Sodium Persulfate In Hydraulic Fracturing Fluids: A Degradation Study Based On Furfural, Katherine Elizabeth Manz

Masters Theses

Hydraulic fracturing has allowed natural gas to become a viable energy source via extraction of unconventional shale reserves, but this process requires an enormous amount of water. To ensure a productive fracture, a proprietary blend of chemical additives is added to the water. In this research, a hydraulic fracturing chemical additive – an enzyme breaking agent – is analyzed for organic components using gas chromatography mass spectrometry. The chemical changes that occur over the course of a fracture are also investigated using one model chemical found in the additive, furfural, in order to help assess the environmental risk that hydraulic …


Biomimetic Tools In Oxidative Metabolism: Characterization Of Reactive Metabolites From Antithyroid Drugs, Kudzanai Chipiso Jun 2016

Biomimetic Tools In Oxidative Metabolism: Characterization Of Reactive Metabolites From Antithyroid Drugs, Kudzanai Chipiso

Dissertations and Theses

Toxicities of sulfur-based drugs have been attributed to formation of highly reactive sulfur oxo-acids and depletion of glutathione by the formation of reactive metabolites. Metabolic activation of these sulfur centers to conceivably toxic reactive metabolites (RMs) that can covalently modify proteins is considered the initial step in drug-induced toxicity. Despite considerable effort and research, detection and characterization of these RMs during drug development and therapy remains a challenge. Methimazole (MMI) and 6-propyl-2-thiouracil (PTU) are two commonly used antithyroid, sulfur-based drugs. Though effective, these drugs are associated with idiosyncratic toxicity. PTU has acquired a black box warning and physicians are calling …


Development Of Palladium Catalyzed Alkene Difunctionalization On Vinyl-Quinoline Type Substrate And Isolation Of Pd-Alkyl Intermediate, Lusha Xu Jan 2016

Development Of Palladium Catalyzed Alkene Difunctionalization On Vinyl-Quinoline Type Substrate And Isolation Of Pd-Alkyl Intermediate, Lusha Xu

Electronic Theses and Dissertations

The synthesis of quinoline derivatives is a continuing issue facing organic chemists in both academia and industry. To address this problem, palladium-catalyzed alkene difunctionalization was developed to be a powerful and straightforward strategy of synthetic transformations for adding diversity to organic molecules. In this thesis, Pd-catalyzed olefin difunctionalization reactions of vinyl-quinoline type substrate via generating Pd-alkyl intermediates were mainly described. The reactions described herein are pursuing three significant goals: 1) to isolate and recrystallize Pd-alkyl complexes; 2) to achieve oxidation reactions on Pd-alkyl intermediate; and 3) to investigate stereochemistry of nucleopalladation step on vinyl-quinoline starting materials.


Towards Catalytic Oxidative Depolymerization Of Lignin, Justin K. Mobley Jan 2016

Towards Catalytic Oxidative Depolymerization Of Lignin, Justin K. Mobley

Theses and Dissertations--Chemistry

Lignin is one of the most abundant and underutilized biopolymers on earth. Primarily composed on three monolignol units (sinapyl, coniferyl, and p-coumaryl alcohol), lignin is formed through a radical pathway resulting in an assortment of linkages, of which the β-O-4 linkage is the most prevalent (up to 60% in some hardwood species). In planta, lignin plays an important role in water transport and in protecting plants from chemical and biological attack. Traditional attempts to depolymerize lignin have focused on the cleavage of β-O-4 linkages via thermal or reductive routes. However these pathways lead to low-value, unstable product mixtures. Moreover, …


Establishing Chemical Mechanisms And Estimating Phase State Of Secondary Organic Aerosol From Atmospherically Relevant Organic Precursors, Shashank Jain Jan 2016

Establishing Chemical Mechanisms And Estimating Phase State Of Secondary Organic Aerosol From Atmospherically Relevant Organic Precursors, Shashank Jain

Graduate College Dissertations and Theses

Organic aerosol (OA) is a ubiquitous component of atmospheric particulate that influences both human health and global climate. A large fraction of OA is secondary in nature (SOA), being produced by oxidation of volatile organic compounds (VOCs) emitted by biogenic and anthropogenic sources. Despite the integral role of SOA in atmospheric processes, there remains a limited scientific understanding of the chemical and physical changes induced in SOA as it ages in the atmosphere. This thesis describes work done to increase the knowledge of processes and properties of atmospherically relevant SOA.

In the work presented in this thesis, I have worked …


Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles, Daniel P. Depuccio Jan 2016

Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles, Daniel P. Depuccio

Graduate College Dissertations and Theses

Tungsten oxide (WO3) is a semiconducting transition metal oxide with interesting electronic, structural, and chemical properties that have been exploited in applications including catalysis, gas sensing, electrochromic displays, and solar energy conversion. Nanocrystalline WO3 can absorb visible light to catalyze heterogeneous photooxidation reactions. Also, the acidity of the WO3 surface makes this oxide a good thermal catalyst in the dehydration of alcohols to various industrially relevant chemicals. This dissertation explores the photocatalytic and thermal catalytic reactivity of nanocrystalline porous WO3 microparticles. Furthermore, investigations into the changes in WO3 reactivity are carried out after modifying the porous WO3 particles with gold …