Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Doctoral Dissertations

Theses/Dissertations

2015

Ionic Liquids

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang May 2015

Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang

Doctoral Dissertations

This dissertation considers the development of porous carbon materials as the substrates for Al deposition/dissolution in an Al based ionic liquid flow battery (ILFB) and demonstration of an Al based hybrid supercapacitor. The Aluminum chloride/ 1-ethyl-3-methylimidazolium chloride chloroaluminate ionic liquid is utilized as the electrolyte for these Al based energy storage devices. The ILFB has less capital cost than the all-vanadium redox flow battery because of the inexpensive AlCl3. The feasibility to equip a tank of solid aluminum chloride in an ILFB system aiming to improve energy density is investigated. A critical range of temperature data (50-130 celsius …


Synthesis And Electrochemical Studies Of Novel Ionic Liquid Based Electrolytes, Avinash Raju Vadapalli Jan 2015

Synthesis And Electrochemical Studies Of Novel Ionic Liquid Based Electrolytes, Avinash Raju Vadapalli

Doctoral Dissertations

"Room temperature ionic liquids (RTILs) have received substantial interest as nonaqueous electrolytes in lithium ion- and metal-air batteries in recent years due to their low volatility, non-flammability, wide liquid range, and thermal stability characteristics. Towards developing a new generation of high specific energy lithium ion batteries, a series of imidazolium and pyrrolidinium based ionic liquids were synthesized and explored as nonaqueous electrolytes in lithium-, lithium ion-, and lithium-air batteries. Pyrrolidinium-TFSI based ionic liquids have wide electrochemical stability (5.7 - 6.2 V vs Li/Li+); however, they show limited thermal stabilities and lithium cell discharge characteristics. TFSI-based ionic liquids are …