Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Chemistry and Biochemistry Faculty Publications

Charge transfer

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

C···O And Si···O Tetrel Bonds: Substituent Effects And Transfer Of The Sif3 Group, Zhihao Niu, Qiaozhuo Wu, Qingzhong Li, Steve Scheiner Jul 2023

C···O And Si···O Tetrel Bonds: Substituent Effects And Transfer Of The Sif3 Group, Zhihao Niu, Qiaozhuo Wu, Qingzhong Li, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

The tetrel bond (TB) between 1,2-benzisothiazol-3-one-2-TF3-1,1-dioxide (T = C, Si) and the O atom of pyridine-1-oxide (PO) and its derivatives (PO-X, X = H, NO2, CN, F, CH3, OH, OCH3, NH2, and Li) is examined by quantum chemical means. The Si···O TB is quite strong, with interaction energies approaching a maximum of nearly 70 kcal/mol, while the C···O TB is an order of magnitude weaker, with interaction energies between 2.0 and 2.6 kcal/mol. An electron-withdrawing substituent on the Lewis base weakens this TB, while an electron-donating group has the opposite …


Versatility Of The Cyano Group In Intermolecular Interactions, Steve Scheiner Sep 2020

Versatility Of The Cyano Group In Intermolecular Interactions, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Several cyano groups are added to an alkane, alkene, and alkyne group so as to construct a Lewis acid molecule with a positive region of electrostatic potential in the area adjoining these substituents. Although each individual cyano group produces only a weak π-hole, when two or more such groups are properly situated, they can pool their π-holes into one much more intense positive region that is located midway between them. A NH3 base is attracted to this site, where it forms a strong noncovalent bond to the Lewis acid, amounting to as much as 13.6 kcal/mol. The precise nature …


Comparison Between Hydrogen And Halogen Bonds In Complexes Of 6-Ox-Fulvene With Pnicogen And Chalcogen Electron Donors, Mingchang Hou, Qing-Zhong Li, Steve Scheiner Jun 2019

Comparison Between Hydrogen And Halogen Bonds In Complexes Of 6-Ox-Fulvene With Pnicogen And Chalcogen Electron Donors, Mingchang Hou, Qing-Zhong Li, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Quantum chemical calculations are applied to complexes of 6‐OX‐fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H‐bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order O


Crystallographic And Computational Characterization Of Methyl Tetrel Bonding In S-Adenosylmethionine-Dependent Methyltransferases, Raymond C. Trievel, Steve Scheiner Nov 2018

Crystallographic And Computational Characterization Of Methyl Tetrel Bonding In S-Adenosylmethionine-Dependent Methyltransferases, Raymond C. Trievel, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the stabilization of a preliminary state that precedes the transition state in SN2 reactions, including methyl transfer. Notably, the angles between the tetrel bond donor and acceptor atoms coincide with the prerequisite geometry for the SN2 reaction. Prompted by these findings, we surveyed crystal structures of methyltransferases in the Protein Data Bank and discovered …


Building A Better Halide Receptor: Optimum Choice Of Spacer, Binding Unit, And Halosubstitution, Binod Nepal, Steve Scheiner Jan 2016

Building A Better Halide Receptor: Optimum Choice Of Spacer, Binding Unit, And Halosubstitution, Binod Nepal, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Quantum calculations are used to measure the binding of halides to a number of bipodal dicationic receptors, constructed as a pair of binding units separated by a spacer group. A number of variations are studied. A H atom on each binding unit (imidazolium or triazolium) is replaced by Br or I. Benzene, thiophene, carbazole, and dimethylnaphthalene are considered as spacer groups. Each receptor is paired with halides F-, Cl-, Br-, and I-. I-substitution on the binding unit yields a large enhancement of binding, as much as 13 orders of magnitude; a much smaller increase occurs for bromosubstitution. Imidazolium is a …


Contributions Of Various Noncovalent Bonds To The Interaction Between An Amide And S-Containing Molecules, U. Adhikari, Steve Scheiner Jan 2012

Contributions Of Various Noncovalent Bonds To The Interaction Between An Amide And S-Containing Molecules, U. Adhikari, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

N-Methylacetamide, a model of the peptide unit in proteins, is allowed to interact with CH3SH, CH3SCH3, and CH3SSCH3 as models of S-containing amino acid residues. All of the minima are located on the ab initio potential energy surface of each heterodimer. Analysis of the forces holding each complex together identifies a variety of different attractive forces, including SH⋅⋅⋅O, NH⋅⋅⋅S, CH⋅⋅⋅O, CH⋅⋅⋅S, SH⋅⋅⋅π, and CH⋅⋅⋅π H-bonds. Other contributing noncovalent bonds involve charge transfer into σ* and π* antibonds. Whereas some of the H-bonds are strong enough that they represent the sole attractive force in several dimers, albeit not usually in the …


Detailed Comparison Of The Pnicogen Bond With Chalcogen, Halogen And Hydrogen Bonds, Steve Scheiner Jan 2012

Detailed Comparison Of The Pnicogen Bond With Chalcogen, Halogen And Hydrogen Bonds, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

The characteristics of the pnicogen bond are explored using a variety of quantum chemical techniques. In particular, this interaction is compared with its halogen and chalcogen bond cousins, as well as with the more common H-bond. In general, these bonds are all of comparable strength. More specifically, they are strengthened by the presence of an electronegative substituent on the electron-acceptor atom, and each gains strength as one moves down the appropriate column of the periodic table, for example, from N to P to As. These noncovalent bonds owe their stability to a mixture in nearly equal parts of electrostatic attraction …