Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Old Dominion University

Troposphere

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Fifteen Years Of Hfc-134a Satellite Observations: Comparisons With Slimcat Calculations, Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath Jan 2021

Fifteen Years Of Hfc-134a Satellite Observations: Comparisons With Slimcat Calculations, Jeremy J. Harrison, Martyn P. Chipperfield, Christopher D. Boone, Sandip S. Dhomse, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

The phase out of anthropogenic ozone-depleting substances such as chlorofluorocarbons under the terms of the Montreal Protocol led to the development and worldwide use of hydrofluorocarbons (HFCs) in refrigeration, air conditioning, and as blowing agents and propellants. Consequently, over recent years, the atmospheric abundances of HFCs have dramatically increased. HFCs are powerful greenhouse gases and are now controlled under the terms of the 2016 Kigali Amendment to the Montreal Protocol. HFC-134a is currently the most abundant HFC in the atmosphere, breaking the 100 ppt barrier in 2018, and can be measured in the Earth's atmosphere by the satellite remote-sensing instrument …


Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan Jan 2020

Nrlmsis 2.0: A Whole-Atmosphere Empirical Model Of Temperature And Neutral Species Densities, J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, Peter F. Bernath, X. Chu, E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams, T. Yuan

Chemistry & Biochemistry Faculty Publications

NRLMSIS® 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of day, solar activity, and geomagnetic activity. NRLMSIS 2.0 is a major, reformulated upgrade of the previous version, NRLMSISE-00. The model now couples thermospheric species densities to the entire column, via an effective mass profile that transitions each species from the fully mixed region below ~70 km altitude to the diffusively separated region above ~200 km. Other …


Phosgene In The Upper Troposphere And Lower Stratosphere: A Marker For Product Gas Injection Due To Chlorine-Containing Very Short Lived Substances, Jeremy J. Harrison, Martyn P. Chipperfield, Ryan Hossaini, Christopher D. Boone, Sandip Dhomse, Wuhu Feng, Peter F. Bernath Jan 2019

Phosgene In The Upper Troposphere And Lower Stratosphere: A Marker For Product Gas Injection Due To Chlorine-Containing Very Short Lived Substances, Jeremy J. Harrison, Martyn P. Chipperfield, Ryan Hossaini, Christopher D. Boone, Sandip Dhomse, Wuhu Feng, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

Abstract: Phosgene in the atmosphere is produced via the degradation of carbon tetrachloride, methyl chloroform, and a number of chlorine‐containing very short lived substances (VSLS). These VSLS are not regulated by the Montreal Protocol even though they contribute to stratospheric ozone depletion. While observations of VSLS can quantify direct stratospheric source gas injection, observations of phosgene in the upper troposphere/lower stratosphere can be used as a marker of product gas injection of chlorine‐containing VSLS. In this work we report upper troposphere/lower stratosphere measurements of phosgene made by the ACE‐FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument and compare with results …


Global Stratospheric Measurements Of The Isotopologues Of Methane From The Atmospheric Chemistry Experiment Fourier Transform Spectrometer, Eric M. Buzan, Chris A. Beale, Chris. D. Boone, Peter F. Bernath Jan 2016

Global Stratospheric Measurements Of The Isotopologues Of Methane From The Atmospheric Chemistry Experiment Fourier Transform Spectrometer, Eric M. Buzan, Chris A. Beale, Chris. D. Boone, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

This paper presents an analysis of observations of methane and its two major isotopologues, CH3D and 13CH4, from the Atmospheric Chemistry Experiment (ACE) satellite between 2004 and 2013. Additionally, atmospheric methane chemistry is modeled using the Whole Atmospheric Community Climate Model (WACCM). ACE retrievals of methane extend from 6 km for all isotopologues to 75 km for 12CH4, 35 km for CH3D, and 50 km for 13CH4. While total methane concentrations retrieved from ACE agree well with the model, values of δD-CH4 and δ13C-CH …


Comparison Of Upper Tropospheric Carbon Monoxide From Mopitt, Ace-Fts, And Hippo-Qcls, Sara Martínez-Alonzo, Merritt N. Deeter, Helen M. Worden, John C. Gille, Louisa K. Emmons, Laura L. Pan, Mijeong Park, Gloria L. Manney, Peter F. Bernath, Chris D. Boone Dec 2014

Comparison Of Upper Tropospheric Carbon Monoxide From Mopitt, Ace-Fts, And Hippo-Qcls, Sara Martínez-Alonzo, Merritt N. Deeter, Helen M. Worden, John C. Gille, Louisa K. Emmons, Laura L. Pan, Mijeong Park, Gloria L. Manney, Peter F. Bernath, Chris D. Boone

Chemistry & Biochemistry Faculty Publications

Products from the Measurements Of Pollution In The Troposphere (MOPITT) instrument are regularly validated using in situ airborne measurements. However, few of these measurements reach into the upper troposphere, thus hindering MOPITT validation in that region. Here we evaluate upper tropospheric (~500 hPa to the tropopause) MOPITT CO profiles by comparing them to satellite Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) retrievals and to measurements from the High-performance Instrumented Airborne Platform for Environmental Research Pole to Pole Observations (HIPPO) Quantum Cascade Laser Spectrometer (QCLS). Direct comparison of colocated v5 MOPITT thermal infrared-only retrievals, v3.0 ACE-FTS retrievals, and HIPPO-QCLS measurements shows …


Hydrocarbons In The Upper Troposphere And Lower Stratosphere Observed From Ace-Fts And Comparisons With Waccm, Mijeong Park, William J. Randel, Douglas E. Kinnison, Louisa K. Emmons, Peter F. Bernath, Kaley A. Walker, Chris D. Boone, Nathaniel J. Livesey Jan 2013

Hydrocarbons In The Upper Troposphere And Lower Stratosphere Observed From Ace-Fts And Comparisons With Waccm, Mijeong Park, William J. Randel, Douglas E. Kinnison, Louisa K. Emmons, Peter F. Bernath, Kaley A. Walker, Chris D. Boone, Nathaniel J. Livesey

Chemistry & Biochemistry Faculty Publications

Satellite measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) are used to examine the global, seasonal variations of several hydrocarbons, including carbon monoxide (CO), ethane (C2H6), acetylene (C2H2), and hydrogen cyanide (HCN). We focus on quantifying large-scale seasonal behavior from the middle troposphere to the stratosphere, particularly in the tropics, and furthermore make detailed comparisons with the Whole Atmosphere Community Climate Model (WACCM) chemistry climate model (incorporating tropospheric photochemistry, time-varying hydrocarbon emissions, and meteorological fields nudged from reanalysis). Comparisons with Microwave Limb Sounder (MLS) measurements of CO are also included …


The Relation Between Atmospheric Humidity And Temperature Trends For Stratospheric Water, S. Fueglistaler, Y. S. Liu, T. J. Flannaghan, P. H. Haynes, D. P. Dee, W. J. Read, E. E. Remsberg, L. W. Thomason, D. F. Hurst, J. R. Lanzante, P. F. Bernath Jan 2013

The Relation Between Atmospheric Humidity And Temperature Trends For Stratospheric Water, S. Fueglistaler, Y. S. Liu, T. J. Flannaghan, P. H. Haynes, D. P. Dee, W. J. Read, E. E. Remsberg, L. W. Thomason, D. F. Hurst, J. R. Lanzante, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective- Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual …


Global Variations Of Hdo And Hdo/H2o Ratios In The Upper Troposphere And Lower Stratosphere Derived From Ace-Fts Satellite Measurements, William J. Randel, Elisabeth Moyer, Mijeong Park, Eric Jensen, Peter Bernath Mar 2012

Global Variations Of Hdo And Hdo/H2o Ratios In The Upper Troposphere And Lower Stratosphere Derived From Ace-Fts Satellite Measurements, William J. Randel, Elisabeth Moyer, Mijeong Park, Eric Jensen, Peter Bernath

Chemistry & Biochemistry Faculty Publications

High-quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., δD) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE-FTS data reveal seasonal variations in the tropics …


Analysis Of Iasi Tropospheric O₃ Data Over The Arctic During Polarcat Campaigns In 2008, M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nédélec, J.-D. Paris, F. Ravetta, T. B. Ryerson, H. Schlager, A. J. Weinheimer Jan 2012

Analysis Of Iasi Tropospheric O₃ Data Over The Arctic During Polarcat Campaigns In 2008, M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nédélec, J.-D. Paris, F. Ravetta, T. B. Ryerson, H. Schlager, A. J. Weinheimer

Chemistry & Biochemistry Faculty Publications

Ozone data retrieved in the Arctic region from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp-A European satellite are presented. They are compared with in situ and lidar observations obtained during a series of aircraft measurement campaigns as part of the International Polar Year POLARCAT activities in spring and summer 2008. Different air masses were sampled during the campaigns including clean air, polluted plumes originating from anthropogenic sources, forest fire plumes from the three northern continents, and stratospheric-influenced air masses. The comparison between IASI O3 [0–8 km], [0–12 km] partial columns and …


Process-Evaluation Of Tropospheric Humidity Simulated By General Circulation Models Using Water Vapor Isotopic Observations: 2. Using Isotopic Diagnostics To Understand The Mid And Upper Tropospheric Moist Bias In The Tropics And Subtropics, Camille Risi, David Noone, John Worden, Christian Frankenberg, Gabriele Stiller, Michael Kiefer, Bernd Funke, Kaley Walker, Peter Bernath, Matthias Schneider, Sandrine Bony, Jeonghoon Lee, Derek Brown, Christophe Sturm Jan 2012

Process-Evaluation Of Tropospheric Humidity Simulated By General Circulation Models Using Water Vapor Isotopic Observations: 2. Using Isotopic Diagnostics To Understand The Mid And Upper Tropospheric Moist Bias In The Tropics And Subtropics, Camille Risi, David Noone, John Worden, Christian Frankenberg, Gabriele Stiller, Michael Kiefer, Bernd Funke, Kaley Walker, Peter Bernath, Matthias Schneider, Sandrine Bony, Jeonghoon Lee, Derek Brown, Christophe Sturm

Chemistry & Biochemistry Faculty Publications

Evaluating the representation of processes controlling tropical and subtropical tropospheric relative humidity (RH) in atmospheric general circulation models (GCMs) is crucial to assess the credibility of predicted climate changes. GCMs have long exhibited a moist bias in the tropical and subtropical mid and upper troposphere, which could be due to the mis-representation of cloud processes or of the large-scale circulation, or to excessive diffusion during water vapor transport. The goal of this study is to use observations of the water vapor isotopic ratio to understand the cause of this bias. We compare the three-dimensional distribution of the water vapor isotopic …


Process-Evaluation Of Tropospheric Humidity Simulated By General Circulation Models Using Water Vapor Isotopologues: 1. Comparison Between Models And Observations, Camille Risi, David Noone, John Worden, Christian Frankenberg, Gabriele Stiller, Michael Kiefer, Bernd Funke, Kaley Walker, Peter Bernath, Matthias Schneider, Debra Wunch, Vanessa Sherlock, Nicholas Deutscher, David Griffith, Paul O. Wennberg, Kimberly Strong, Dan Smale, Emmanuel Mahieu, Sabine Barthlott, Frank Hase, Omaira García, Justus Notholt, Thorsten Warneke, Geoffrey Toon, David Sayres, Sandrine Bony, Jeonghoon Lee, Derek Brown, Ryu Uemura, Christophe Sturm Jan 2012

Process-Evaluation Of Tropospheric Humidity Simulated By General Circulation Models Using Water Vapor Isotopologues: 1. Comparison Between Models And Observations, Camille Risi, David Noone, John Worden, Christian Frankenberg, Gabriele Stiller, Michael Kiefer, Bernd Funke, Kaley Walker, Peter Bernath, Matthias Schneider, Debra Wunch, Vanessa Sherlock, Nicholas Deutscher, David Griffith, Paul O. Wennberg, Kimberly Strong, Dan Smale, Emmanuel Mahieu, Sabine Barthlott, Frank Hase, Omaira García, Justus Notholt, Thorsten Warneke, Geoffrey Toon, David Sayres, Sandrine Bony, Jeonghoon Lee, Derek Brown, Ryu Uemura, Christophe Sturm

Chemistry & Biochemistry Faculty Publications

The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate …