Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Entire DC Network

Editorial: The Marine Iodine Cycle, Past, Present, And Future, Rosie Chance, Gregory A. Cutter, Dalton S. Hardisty, Anoop S. Mahajan Jan 2024

Editorial: The Marine Iodine Cycle, Past, Present, And Future, Rosie Chance, Gregory A. Cutter, Dalton S. Hardisty, Anoop S. Mahajan

OES Faculty Publications

In this Research Topic, we bring together ten articles from the diverse research communities interested in the marine iodine cycle, including paleoceanographers, atmospheric chemists, and biogeochemists. The physical chemistry underpinning iodine’s chemical speciation and transformations in the ocean is reviewed by Luther; this paper provides a theoretical basis for the field observations presented in this Research Topic.


Global Oceanic Diazotroph Database Version 2 And Elevated Estimate Of Global N2 Fixation, Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Ya-Wei Luo Jan 2023

Global Oceanic Diazotroph Database Version 2 And Elevated Estimate Of Global N2 Fixation, Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Ya-Wei Luo

OES Faculty Publications

Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial …


Systemic Analyses Of Radiocarbon Ages Of Coexisting Planktonic Foraminifera, Jörg Lippold, Julia Gottschalk, Jean Lynch-Stieglitz, Matthew W. Schmidt, Sönke Szidat, Andre Bahr Jan 2023

Systemic Analyses Of Radiocarbon Ages Of Coexisting Planktonic Foraminifera, Jörg Lippold, Julia Gottschalk, Jean Lynch-Stieglitz, Matthew W. Schmidt, Sönke Szidat, Andre Bahr

OES Faculty Publications

We compare radiocarbon (14C) ages of coexisting planktonic foraminifera species from sediment cores VM12-107 and KNR166-2-26JPC from the Equatorial Atlantic Ocean for three time periods (Holocene, Heinrich Stadial 1, last glacial maximum). We find a maximum inter-species difference of 1200 14C yr. On average, the 14C ages deviate by ∼300 yr between Globigerinoides ruber and other species. In most cases, this exceeds the analytical uncertainty range of the measurements and thus renders the choice of species for generating age models as important as sample weight. While modern stratified water-column profiles imply an increase in 14C …


Authigenic Iron Is A Significant Component Of Oceanic Labile Particulate Iron Inventories, Laura E. Sofen, Olga A. Antipova, Kristen N. Buck, Salvatore Caprara, Lauren Chacho, Rodney J. Johnson, Gabriella Kim, Peter Morton, Daniel C. Ohnemus, Sara Rauschenberg, Peter N. Sedwick, Alessandro Tagliabue, Benjamin S. Twining Jan 2023

Authigenic Iron Is A Significant Component Of Oceanic Labile Particulate Iron Inventories, Laura E. Sofen, Olga A. Antipova, Kristen N. Buck, Salvatore Caprara, Lauren Chacho, Rodney J. Johnson, Gabriella Kim, Peter Morton, Daniel C. Ohnemus, Sara Rauschenberg, Peter N. Sedwick, Alessandro Tagliabue, Benjamin S. Twining

OES Faculty Publications

Particulate phases transport trace metals (TM) and thereby exert a major control on TM distribution in the ocean. Particulate TMs can be classified by their origin as lithogenic (crustal material), biogenic (cellular), or authigenic (formed in situ), but distinguishing these fractions analytically in field samples is a challenge often addressed using operational definitions and assumptions. These different phases require accurate characterization because they have distinct roles in the biogeochemical iron cycle. Particles collected from the upper 2,000 m of the northwest subtropical Atlantic Ocean over four seasonal cruises throughout 2019 were digested with a chemical leach to operationally distinguish labile …


Interactions Of Bioactive Trace Metals In Shipboard Southern Ocean Incubation Experiments, Shannon M. Burns, Randelle M. Bundy, William Abbott, Zuzanna Abdala, Alexa R. Sterling, P. Dreux Chappell, Bethany D. Jenkins, Kristen N. Buck Jan 2023

Interactions Of Bioactive Trace Metals In Shipboard Southern Ocean Incubation Experiments, Shannon M. Burns, Randelle M. Bundy, William Abbott, Zuzanna Abdala, Alexa R. Sterling, P. Dreux Chappell, Bethany D. Jenkins, Kristen N. Buck

OES Faculty Publications

In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shipboard incubations. Three experiments were conducted in September–October 2016 near the West Antarctic Peninsula: Incubations 1 and 3 offshore in the Antarctic Circumpolar Current, and Incubation 2 inshore in Bransfield Strait. Additions of Fe and/or vitamin B12 to inshore and offshore waters were employed and allowed assessment of metal (M) …


Potential Interactions Between Diatoms And Bacteria Are Shaped By Trace Element Gradients In The Southern Ocean, Alexa R. Sterling, Laura Z. Holland, Randelle M. Bundy, Shannon M. Burns, Kristen N. Buck, P. Dreux Chappell, Bethany D. Jenkins Jan 2023

Potential Interactions Between Diatoms And Bacteria Are Shaped By Trace Element Gradients In The Southern Ocean, Alexa R. Sterling, Laura Z. Holland, Randelle M. Bundy, Shannon M. Burns, Kristen N. Buck, P. Dreux Chappell, Bethany D. Jenkins

OES Faculty Publications

The growth of diatoms in the Southern Ocean, especially the region surrounding the West Antarctic Peninsula, is frequently constrained by low dissolved iron and other trace metal concentrations. This challenge may be overcome by mutualisms between diatoms and co-occurring associated bacteria, in which diatoms produce organic carbon as a substrate for bacterial growth, and bacteria produce siderophores, metal-binding ligands that can supply diatoms with metals upon uptake as well as other useful secondary compounds for diatom growth like vitamins. To examine the relationships between diatoms and bacteria in the plankton (diatom) size class (> 3 mu m), we sampled both …


Isotopic Evidence For Sources Of Dissolved Carbon And The Role Of Organic Matter Respiration In The Fraser River Basin, Canada, Britta M. Voss, Timothy I. Eglinton, Bernhard Peucker-Ehrenbrink, Valier Galy, Susan Q. Lang, Cameron Mcintyre, Robert G.M. Spencer, Ekaterina Bulygina, Zhaohui Aleck Wang, Katherine A. Guay Jan 2023

Isotopic Evidence For Sources Of Dissolved Carbon And The Role Of Organic Matter Respiration In The Fraser River Basin, Canada, Britta M. Voss, Timothy I. Eglinton, Bernhard Peucker-Ehrenbrink, Valier Galy, Susan Q. Lang, Cameron Mcintyre, Robert G.M. Spencer, Ekaterina Bulygina, Zhaohui Aleck Wang, Katherine A. Guay

OES Faculty Publications

Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream chemical and isotopic signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in …


Atmospheric Input And Seasonal Inventory Of Dissolved Iron In The Sargasso Sea: Implications For Iron Dynamics In Surface Waters Of The Subtropical Ocean, Peter N. Sedwick, Bettina M. Sohst, K. N. Buck, S. Caprara, R. J. Johnson, D. C. Ohnemus, L. E. Sofen, A. Tagliabue, B. S. Twining, Tara E. Williams Jan 2023

Atmospheric Input And Seasonal Inventory Of Dissolved Iron In The Sargasso Sea: Implications For Iron Dynamics In Surface Waters Of The Subtropical Ocean, Peter N. Sedwick, Bettina M. Sohst, K. N. Buck, S. Caprara, R. J. Johnson, D. C. Ohnemus, L. E. Sofen, A. Tagliabue, B. S. Twining, Tara E. Williams

OES Faculty Publications

Constraining the role of dust deposition in regulating the concentration of the essential micronutrient iron in surface ocean waters requires knowledge of the flux of seawater-soluble iron in aerosols and the replacement time of dissolved iron (DFe) in the euphotic zone. Here we estimate these quantities using seasonally resolved DFe data from the Bermuda Atlantic Time-series Study region and weekly-scale measurements of iron in aerosols and rain from Bermuda during 2019. In response to seasonal changes in vertical mixing, primary production and dust deposition, surface DFe concentrations vary from ∼0.2 nM in early spring to >1 nM in late summer, …


Insights Into The Deglacial Variability Of Phytoplankton Community Structure In The Eastern Equatorial Pacific Ocean Using [231Pa/230Th]Xs And Opal-Carbonate Fluxes, Danielle Schimmenti, Franco Marcantonio, Christopher T. Hayes, Jennifer Hertzberg, Matthew Schmidt, John Sarao Jan 2022

Insights Into The Deglacial Variability Of Phytoplankton Community Structure In The Eastern Equatorial Pacific Ocean Using [231Pa/230Th]Xs And Opal-Carbonate Fluxes, Danielle Schimmenti, Franco Marcantonio, Christopher T. Hayes, Jennifer Hertzberg, Matthew Schmidt, John Sarao

OES Faculty Publications

Fully and accurately reconstructing changes in oceanic productivity and carbon export and their controls is critical to determining the efficiency of the biological pump and its role in the global carbon cycle through time, particularly in modern CO2 source regions like the eastern equatorial Pacific (EEP). Here we present new high-resolution records of sedimentary 230Th-normalized opal and nannofossil carbonate fluxes and [231Pa/230Th]xs ratios from site MV1014-02-17JC in the Panama Basin. We find that, across the last deglaciation, phytoplankton community structure is driven by changing patterns of nutrient (nitrate, iron, and silica) availability which, in …


Calcification, Dissolution And Test Properties Of Modern Planktonic Foraminifera From The Central Atlantic Ocean, Stergios D. Zarkogiannis, Shinya Iwasaki, James William Buchanan Rae, Matthew W. Schmidt, P. Graham Mortyn, George Kontakiotis, Jennifer E. Hertzberg, Rosalind E.M. Rickaby Jan 2022

Calcification, Dissolution And Test Properties Of Modern Planktonic Foraminifera From The Central Atlantic Ocean, Stergios D. Zarkogiannis, Shinya Iwasaki, James William Buchanan Rae, Matthew W. Schmidt, P. Graham Mortyn, George Kontakiotis, Jennifer E. Hertzberg, Rosalind E.M. Rickaby

OES Faculty Publications

The mass of well-preserved calcite in planktonic foraminifera shells provides an indication of the calcification potential of the surface ocean. Here we report the shell weight of 8 different abundant planktonic foraminifera species from a set of core-top sediments along the Mid-Atlantic Ridge. The analyses showed that near the equator, foraminifera shells of equivalent size weigh on average 1/3 less than those from the middle latitudes. The carbonate preservation state of the samples was assessed by high resolution X-ray microcomputed tomographic analyses of Globigerinoides ruber and Globorotalia truncatulinoides specimens. The specimen preservation was deemed good and does not overall explain …


Radium Isotopes As Submarine Groundwater Discharge (Sgd) Tracers: Review And Recommendations, J. Garcia-Orellana, V. Rodellas, Joseph Tamborski, M. Diego-Feliu, P. Van Beek, Y. Weinstein, M. Charette, A. Alorda-Kleinglass, H.A. Michael, T. Stieglitz, J. Scholten Jan 2021

Radium Isotopes As Submarine Groundwater Discharge (Sgd) Tracers: Review And Recommendations, J. Garcia-Orellana, V. Rodellas, Joseph Tamborski, M. Diego-Feliu, P. Van Beek, Y. Weinstein, M. Charette, A. Alorda-Kleinglass, H.A. Michael, T. Stieglitz, J. Scholten

OES Faculty Publications

Submarine groundwater discharge (SGD) is now recognized as an important process of the hydrological cycle worldwide and plays a major role as a conveyor of dissolved compounds to the ocean. Naturally occurring radium isotopes (Ra-223, Ra-224, Ra-226 and Ra-228) are widely employed geochemical tracers in marine environments. Whilst Ra isotopes were initially predominantly applied to study open ocean processes and fluxes across the continental margins, their most common application in the marine environment has undoubtedly become the identification and quantification of SGD. This review focuses on the application of Ra isotopes as tracers of SGD and associated inputs of water …


Toward Resolving Disparate Accounts Of The Extent And Magnitude Of Nitrogen Fixation In The Eastern Tropical South Pacific Oxygen Deficient Zone, Corday R. Selden, Margaret R. Mulholland, Brittany Widner, Peter Bernhardt, Amal Jayakumar Jan 2021

Toward Resolving Disparate Accounts Of The Extent And Magnitude Of Nitrogen Fixation In The Eastern Tropical South Pacific Oxygen Deficient Zone, Corday R. Selden, Margaret R. Mulholland, Brittany Widner, Peter Bernhardt, Amal Jayakumar

OES Faculty Publications

Examination of dinitrogen (N2) fixation in the Eastern Tropical South Pacific oxygen deficient zone has raised questions about the range of diazotrophs in the deep sea and their quantitative importance as a source of new nitrogen globally. However, technical considerations in the deployment of stable isotopes in quantifying N2 fixation rates have complicated interpretation of this research. Here, we report the findings of a comprehensive survey of N2 fixation within, above and below the Eastern Tropical South Pacific oxygen deficient zone. N2 fixation rates were measured using a robust 15N tracer method (bubble removal) …


Taxonomic And Nutrient Controls On Phytoplankton Iron Quotas In The Ocean, Benjamin S. Twining, Olga Antipova, P. Dreux Chappell, Natalie R. Cohen, Jeremy E. Jacquot, Elizabeth L. Mann, Adrian Marchetti, Daniel C. Ohnemus, Sara Rauschenberg, Alessandro Tagliabue Jan 2021

Taxonomic And Nutrient Controls On Phytoplankton Iron Quotas In The Ocean, Benjamin S. Twining, Olga Antipova, P. Dreux Chappell, Natalie R. Cohen, Jeremy E. Jacquot, Elizabeth L. Mann, Adrian Marchetti, Daniel C. Ohnemus, Sara Rauschenberg, Alessandro Tagliabue

OES Faculty Publications

Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of …


Pore Water Exchange-Driven Inorganic Carbon Export From Intertidal Salt Marshes, Joeseph J. Tamborski, Meagan Eagle, Barret L. Kurylyk, Kevin D. Kroeger, Zhaoihui Aleck Wang, Paul Henderson, Matthew A. Charette Jan 2021

Pore Water Exchange-Driven Inorganic Carbon Export From Intertidal Salt Marshes, Joeseph J. Tamborski, Meagan Eagle, Barret L. Kurylyk, Kevin D. Kroeger, Zhaoihui Aleck Wang, Paul Henderson, Matthew A. Charette

OES Faculty Publications

Respiration in intertidal salt marshes generates dissolved inorganic carbon (DIC) that is exported to the coastal ocean by tidal exchange with the marsh platform. Understanding the link between physical drivers of water exchange and chemical flux is a key to constraining coastal wetland contributions to regional carbon budgets. The spatial and temporal (seasonal, annual) variability of marsh pore water exchange and DIC export was assessed from a microtidal salt marsh (Sage Lot Pond, Massachusetts). Spatial variability was constrained from 224Ra : 228Th disequilibria across two hydrologic units within the marsh sediments. Disequilibrium between the more soluble 224Ra …


Microplastic Fragment And Fiber Contamination Of Beach Sediments From Selected Sites In Virginia And North Carolina, Usa, Gabrielle Z. Dodson, A. Katrina Shotorban, Patrick G. Hatcher, Derek Waggoner, Sutapa Ghosal, Nora Noffke Jan 2020

Microplastic Fragment And Fiber Contamination Of Beach Sediments From Selected Sites In Virginia And North Carolina, Usa, Gabrielle Z. Dodson, A. Katrina Shotorban, Patrick G. Hatcher, Derek Waggoner, Sutapa Ghosal, Nora Noffke

OES Faculty Publications

Microplastic particles (<5 >mm) constitute a growing pollution problem within coastal environments. This study investigated the microplastic presence of estuarine and barrier island beaches in the states of Virginia and North Carolina, USA. Seventeen sediment cores were collected at four study sites and initially tested for microplastic presence by pyrolysis-gas chromatography–mass spectrometry. For the extraction, microplastic particles were first separated from the sediment using a high-density cesium chloride solution (1.88 g/mL). In a second step, an oil extraction collected the remaining microplastic particles of higher densities. Under the light microscope, the extracted microplastic particles were classified based on their morphologies …


Metaproteomics Reveal That Rapid Perturbations In Organic Matter Prioritize Functional Restructuring Over Taxonomy In Western Arctic Ocean Microbiomes, Molly P. Mikan, H. Rodger Harvey, Emma Timmins-Schiffman, Michael Riffle, Damon H. May, Ian Salter, William S. Noble, Brook L. Nunn Jan 2019

Metaproteomics Reveal That Rapid Perturbations In Organic Matter Prioritize Functional Restructuring Over Taxonomy In Western Arctic Ocean Microbiomes, Molly P. Mikan, H. Rodger Harvey, Emma Timmins-Schiffman, Michael Riffle, Damon H. May, Ian Salter, William S. Noble, Brook L. Nunn

OES Faculty Publications

We examined metaproteome profiles from two Arctic microbiomes during 10-day shipboard incubations to directly track early functional and taxonomic responses to a simulated algal bloom and an oligotrophic control. Using a novel peptide-based enrichment analysis, significant changes (p-value < 0.01) in biological and molecular functions associated with carbon and nitrogen recycling were observed. Within the first day under both organic matter conditions, Bering Strait surface microbiomes increased protein synthesis, carbohydrate degradation, and cellular redox processes while decreasing C1 metabolism. Taxonomic assignments revealed that the core microbiome collectively responded to algal substrates by assimilating carbon before select taxa utilize and metabolize nitrogen intracellularly. Incubations of Chukchi Sea bottom water microbiomes showed similar, but delayed functional responses to identical treatments. Although 24 functional terms were shared between experimental treatments, the timing, and degree of the remaining responses were highly variable, showing that organic matter perturbation directs community functionality prior to alterations to the taxonomic distribution at the microbiome class level. The dynamic responses of these two oceanic microbial communities have important implications for timing and magnitude of responses to organic perturbations within the Arctic Ocean and how community-level functions may forecast biogeochemical gradients in oceans.


Interpreting Mosaics Of Ocean Biogeochemistry, Andrea Fassbender, A. Bourbonnais, Sophie Clayton, P. Gaube, M. Ormand, P.J.S. Franks, M. A. Altabet, D.J. Mcgillicuddy Jr. Jan 2018

Interpreting Mosaics Of Ocean Biogeochemistry, Andrea Fassbender, A. Bourbonnais, Sophie Clayton, P. Gaube, M. Ormand, P.J.S. Franks, M. A. Altabet, D.J. Mcgillicuddy Jr.

OES Faculty Publications

Advances in technology and modeling capabilities are driving a surge in progress in our understanding of how ocean ecosystems mix and mingle on medium to small scales.


Perspectives On Chemical Oceanography In The 21st Century: Participants Of The Come Aboard Meeting Examine Aspects Of The Field In The Context Of 40 Years Of Disco, Andrea J. Fassbender, Hilary I. Palevsky, Todd R. Martz, Anitra E. Ingalls, Martha Gledhill, Sarah E. Fawcett, Jay A. Brandes, Lihini I. Aluwihare, The Participants Of Come Aboard, Disco Xxv Jan 2018

Perspectives On Chemical Oceanography In The 21st Century: Participants Of The Come Aboard Meeting Examine Aspects Of The Field In The Context Of 40 Years Of Disco, Andrea J. Fassbender, Hilary I. Palevsky, Todd R. Martz, Anitra E. Ingalls, Martha Gledhill, Sarah E. Fawcett, Jay A. Brandes, Lihini I. Aluwihare, The Participants Of Come Aboard, Disco Xxv

OES Faculty Publications

The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best …


Corrigendum: Composition Of Dissolved Organic Matter In Pore Waters Of Anoxic Marine Sediments Analyzed By 1h Nuclear Magnetic Resonance Spectroscopy, Christina A. Fox, Hussain A. Abdulla, David J. Burdige, James P. Lewicki, Tomoko Komada Jan 2018

Corrigendum: Composition Of Dissolved Organic Matter In Pore Waters Of Anoxic Marine Sediments Analyzed By 1h Nuclear Magnetic Resonance Spectroscopy, Christina A. Fox, Hussain A. Abdulla, David J. Burdige, James P. Lewicki, Tomoko Komada

OES Faculty Publications

No abstract provided.


Phytoplankton Plastid Proteomics: Cracking Open Diatoms To Understand Plastid Biochemistry Under Iron Limitation, Skyler J. Nunn, Phoebe Dreux Chappell, Kristofer Gomes, Anasthasia Bonderenko, Bethany D. Jenkins, Brook L. Nunn Jan 2017

Phytoplankton Plastid Proteomics: Cracking Open Diatoms To Understand Plastid Biochemistry Under Iron Limitation, Skyler J. Nunn, Phoebe Dreux Chappell, Kristofer Gomes, Anasthasia Bonderenko, Bethany D. Jenkins, Brook L. Nunn

OES Faculty Publications

Diatoms, such as Thalassiosira pseudonana, are important oceanic primary producers, as they sequester carbon dioxide (CO₂) out of the atmosphere, die, and precipitate to the ocean floor. In many areas of the world’s oceans, phytoplankton, such as diatoms, are limited in growth by the availability of iron (Fe). Fe is an essential nutrient for phytoplankton, as it is central in the electron transport chain component of photosynthesis. Through this study, we examined if Fe-limitation makes a significant difference in the proteins expressed within the chloroplast, the power source for diatoms. Here, we utilized a new plastid isolation technique specific …


Interpretation Of Complexometric Titration Data: An Intercomparison Of Methods For Estimating Models Of Trace Metal Complexation By Natural Organic Ligands, I. Pižeta, S. G. Sander, R. J. M. Hudson, D. Omanović, O. Baars, K. A. Barbeau, K. N. Buck, R. M. Bundy, G. Carrasco, P. L. Croot Jan 2015

Interpretation Of Complexometric Titration Data: An Intercomparison Of Methods For Estimating Models Of Trace Metal Complexation By Natural Organic Ligands, I. Pižeta, S. G. Sander, R. J. M. Hudson, D. Omanović, O. Baars, K. A. Barbeau, K. N. Buck, R. M. Bundy, G. Carrasco, P. L. Croot

OES Faculty Publications

With the common goal of more accurately and consistently quantifying ambient concentrations of free metal ions and natural organic ligands in aquatic ecosystems, researchers from 15 laboratories that routinely analyze trace metal speciation participated in an intercomparison of statistical methods used to model their most common type of experimental dataset, the complexometric titration. All were asked to apply statistical techniques that they were familiar with to model synthetic titration data that are typical of those obtained by applying state-of-the-art electrochemical methods – anodic stripping voltammetry (ASV) and competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE-ACSV) – to the analysis of natural …


Anthropogenic Osmium In Rain And Snow Reveals Global-Scale Atmospheric Contamination, Cynthia Chen, Peter N. Sedwick, Mukul Sharma Jan 2009

Anthropogenic Osmium In Rain And Snow Reveals Global-Scale Atmospheric Contamination, Cynthia Chen, Peter N. Sedwick, Mukul Sharma

OES Faculty Publications

Osmium is one of the rarer elements in seawater, with typical concentration of ≈10 x 10-15 g g-1 ( 5.3 x 10-14 mol kg-1. The osmium isotope composition (187Os/188Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (≈ 1.3) and mantle/cosmic dust (≈ 0.13). Here, we show that the 187Os/188Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximate to 0.2) …


A Tribute To Peter George Brewer In Celebration Of His 65th Birthday, George T. F. Wong, Robert F. Anderson, Michael P. Bacon, Hein J. W. De Baar, James W. Murray, Mary I. Scranton Jan 2008

A Tribute To Peter George Brewer In Celebration Of His 65th Birthday, George T. F. Wong, Robert F. Anderson, Michael P. Bacon, Hein J. W. De Baar, James W. Murray, Mary I. Scranton

OES Faculty Publications

Peter George Brewer is an ocean chemist of the rare breed that can cross back and forth over the divide between being a front-line research scientist and being a research executive. As if that is not remarkable enough, in the process, he has also demonstrated sustained growth in the depth, breadth, and diversity of his scientific endeavors. Some of his formidable contributions to ocean chemistry have already been highlighted in a profile of him as a major mover and shaker in the field (Irion, 2001). Here, we provide additional glimpses of him from the perspective of a group of individuals …


Trace Elements In Estuarine And Coastal Waters: U.S. Studies From 1986-1990, Gregory A. Cutter Jan 1991

Trace Elements In Estuarine And Coastal Waters: U.S. Studies From 1986-1990, Gregory A. Cutter

OES Faculty Publications

The use of specialized analytical techniques, field studies, controlled laboratory experiments, and geochemical modeling have allowed U.S. investigators to expand our understanding of trace element cycling in coastal waters and estuaries. Considerable emphasis has been placed on quantifying the flux of trace elements within and through the coastal zone. In addition, substantial progress has been made in identifying the chemical speciation of many trace elements, providing a linkage between the geochemical and biochemical behavior of these elements. Another significant advance has been the use of trace elements as tracers of geochemical processes and water masses in the coastal environment.


Hydrogen Sulfide And Radon In And Over The Western North Atlantic Ocean, T. W. Andreae, Gregory A. Cutter, N. Hussain, J. Radford-Knoery, M. O. Andreae Jan 1991

Hydrogen Sulfide And Radon In And Over The Western North Atlantic Ocean, T. W. Andreae, Gregory A. Cutter, N. Hussain, J. Radford-Knoery, M. O. Andreae

OES Faculty Publications

Atmospheric measurements of radon and hydrogen sulfide, and seawater measurements of total sulfide, free sulfide, and carbonyl sulfide, were made on a cruise in the western North Atlantic Ocean (October 24 to November 9, 1989). Measured values for 222Rn ranged from 3 to 70 pCi m−3, those for atmospheric hydrogen sulfide from 1 to 85 parts per trillion, and those for dissolved total and free sulfide in seawater from 33 to 930 pmol L−1 and 0 to 73 pmol L−1, respectively. A positive correlation between 222Rn and atmospheric H2S was observed. …


Sulfide In Surface Waters Of The Western Atlantic Ocean, Gregory A. Cutter, Christian F. Krahforst Nov 1988

Sulfide In Surface Waters Of The Western Atlantic Ocean, Gregory A. Cutter, Christian F. Krahforst

OES Faculty Publications

Using newly developed techniques, some preliminary data on hydrogen sulfide in surface waters of the western Atlantic have been obtained. Concentrations of total sulfide range from <0.1 to 1.1 nmol/L, and vary on a diel basis. At these concentrations, sulfide may affect the cycling of several trace metals via the formation of stable complexes. Production of sulfide in oxygenated seawater may occur through the hydrolysis of carbonyl sulfide or by sulfate reduction within macroscopic particles in the water column. Removal mechanisms can include oxidation, complexation with particulate trace metals, and metal sulfide precipitation. However, the temporal and spatial distributions suggest a complex set of processes governing the behavior of sulfide in the surface ocean.


The Occurrence And Distribution Of Methane In The Marine Environment, Larry Philip Atkinson Jan 1966

The Occurrence And Distribution Of Methane In The Marine Environment, Larry Philip Atkinson

OES Faculty Publications

The distribution of methane in several anoxic marine environments is described. Maximum concentrations observed were μ mole CH4-C/liter. The distribution of methane seems to follow that of sulfide. The data indicate that methane is derived from organic compounds not containing nitrogen or phosphorus and that its formation is much slower than that of sulfide.