Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Improved Detection By Ensemble-Decision Aliquot Ranking Of Circulating Tumor Cells With Low Numbers Of A Targeted Surface Antigen, Eleanor S. Johnson, Robbyn K. Anand, Daniel T. Chiu Aug 2015

Improved Detection By Ensemble-Decision Aliquot Ranking Of Circulating Tumor Cells With Low Numbers Of A Targeted Surface Antigen, Eleanor S. Johnson, Robbyn K. Anand, Daniel T. Chiu

Robbyn Anand

Circulating tumor cells (CTCs) are shed from a solid tumor into the bloodstream and can seed new metastases. CTCs hold promise for cancer diagnosis and prognosis and to increase our understanding of the metastatic process. However, their low numbers in blood and varied phenotypic characteristics make their detection and isolation difficult. One source of heterogeneity among CTCs is molecular: When they leave the primary tumor, these cells must undergo a molecular transition, which increases their mobility and chance of survival in the blood. During this molecular transition, the cells lose some of their epithelial character, which is manifested by the …


Synthetic Strategies For Tailoring The Physicochemical And Magnetic Properties Of Hydrophobic Magnetic Ionic Liquids, Omprakash Nacham, Kevin D. Clark, Honglian Yu, Jared L. Anderson Jan 2015

Synthetic Strategies For Tailoring The Physicochemical And Magnetic Properties Of Hydrophobic Magnetic Ionic Liquids, Omprakash Nacham, Kevin D. Clark, Honglian Yu, Jared L. Anderson

Jared L. Anderson

Magnetic ionic liquids (MILs) are a subclass of ionic liquids (ILs) containing paramagnetic components and are readily manipulated by an external magnetic field. Due to their hydrophilic nature, very few applications of MILs in aqueous systems have been reported. In this study, three general classes of hydrophobic MILs including monocationic, symmetrical/unsymmetrical dicationic, and symmetrical/unsymmetrical tricationic MILs were synthesized and characterized. By tuning the structure of the MIL, various physicochemical properties including water solubility, magnetic susceptibility, and melting point were regulated. MILs synthesized with the benzimidazolium cation were shown to exhibit lower water solubility (0.1% (w/v)) when compared to those containing …


Extraction Of Dna By Magnetic Ionic Liquids: Tunable Solvents For Rapid And Selective Dna Analysis, Kevin D. Clark, Omprakash Nacham, Honglian Yu, Tianhao Li, Melissa M. Yamsek, Donald R. Ronning, Jared L. Anderson Jan 2015

Extraction Of Dna By Magnetic Ionic Liquids: Tunable Solvents For Rapid And Selective Dna Analysis, Kevin D. Clark, Omprakash Nacham, Honglian Yu, Tianhao Li, Melissa M. Yamsek, Donald R. Ronning, Jared L. Anderson

Jared L. Anderson

DNA extraction represents a significant bottleneck in nucleic acid analysis. In this study, hydrophobic magnetic ionic liquids (MILs) were synthesized and employed as solvents for the rapid and efficient extraction of DNA from aqueous solution. The DNA-enriched microdroplets were manipulated by application of a magnetic field. The three MILs examined in this study exhibited unique DNA extraction capabilities when applied toward a variety of DNA samples and matrices. High extraction efficiencies were obtained for smaller single-stranded and double-stranded DNA using the benzyltrioctylammonium bromotrichloroferrate(III) ([(C8)3BnN+][FeCl3Br–]) MIL, while the dicationic 1,12-di(3-hexadecylbenzimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide bromotrichloroferrate(III) ([(C16BnIM)2C122+][NTf2–, FeCl3Br–]) MIL produced higher extraction efficiencies for larger …


Large Interdomain Rearrangement Triggered By Suppression Of Micro- To Millisecond Dynamics In Bacterial ​Enzyme I, Vincenzo Venditti, Vitali Tugarinov, Charles D. Schwieters, Alexander Grishaev, G. Marius Clore Jan 2015

Large Interdomain Rearrangement Triggered By Suppression Of Micro- To Millisecond Dynamics In Bacterial ​Enzyme I, Vincenzo Venditti, Vitali Tugarinov, Charles D. Schwieters, Alexander Grishaev, G. Marius Clore

Vincenzo Venditti

Enzyme I (EI), the first component of the bacterial phosphotransfer signal transduction system, undergoes one of the largest substrate-induced interdomain rearrangements documented to date. Here we characterize the perturbations generated by two small molecules, the natural substrate phosphoenolpyruvate and the inhibitor a-ketoglutarate, on the structure and dynamics of EI using NMR, small-angle X-ray scattering and biochemical techniques. The results indicate unambiguously that the open-to-closed conformational switch of EI is triggered by complete suppression of micro- to millisecond dynamics within the C-terminal domain of EI. Indeed, we show that a ligand-induced transition from a dynamic to a more rigid conformational state …


Negative Dielectrophoretic Capture And Repulsion Of Single Cells At A Bipolar Electrode: The Impact Of Faradaic Ion Enrichment And Depletion, Robbyn K. Anand, Eleanor S. Johnson, Daniel T. Chiu Jan 2015

Negative Dielectrophoretic Capture And Repulsion Of Single Cells At A Bipolar Electrode: The Impact Of Faradaic Ion Enrichment And Depletion, Robbyn K. Anand, Eleanor S. Johnson, Daniel T. Chiu

Robbyn Anand

This paper describes the dielectrophoretic (DEP) forces generated by a bipolar electrode (BPE) in a microfluidic device and elucidates the impact of faradaic ion enrichment and depletion (FIE and FID) on electric field gradients. DEP technologies for manipulating biological cells provide several distinct advantages over other cell-handling techniques including label-free selectivity, inexpensive device components, and amenability to single-cell and array-based applications. However, extension to the array format is nontrivial, and DEP forces are notoriously short-range, limiting device dimensions and throughput. BPEs present an attractive option for DEP because of the ease with which they can be arrayed. Here, we present …