Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Entire DC Network

Photodynamic Killing Of Human Cancer Cells With Smart Photosensitizer Materials And An Endoscopic Implement For Singlet Oxygen Delivery, Mihaela N. Minnis Sep 2016

Photodynamic Killing Of Human Cancer Cells With Smart Photosensitizer Materials And An Endoscopic Implement For Singlet Oxygen Delivery, Mihaela N. Minnis

Dissertations, Theses, and Capstone Projects

The thesis describes progress on probe tips for a microoptic device for the precise delivery of the components necessary for photodynamic therapy (PDT) in a highly localized and controllable fashion. The thesis also summarizes results of a photosensitized oxidation study. The work focused on i) developing a photoactive fluoropolymer surface that will release sensitizer drug molecule for use in PDT, ii) designing new probe tips surfaces for use as sensitizer support for a microoptic PDT device, iii) exploring strategies for covalent attachment of sensitizers and model compounds to Teflon/PVA surfaces with the aim of being coupled with our microoptic device, …


I. Synthesis Of Diverse Structures From Quinone Monoketal And Quinone Imine Ketal With Efficiency And Control Ii. Synthetic Study Of Phalarine, Zhiwei Yin Sep 2016

I. Synthesis Of Diverse Structures From Quinone Monoketal And Quinone Imine Ketal With Efficiency And Control Ii. Synthetic Study Of Phalarine, Zhiwei Yin

Dissertations, Theses, and Capstone Projects

Quinonoids are quinone derivatives that have carbonyl or carbonyl equivalent and even number of double bonds embedded in six member rings. As a result of the intrinsic α,β-unsaturated ketone or imine structures, quinonoids, such as quinone monoketals, quinols, quinol ethers and quinone imine ketals, can accommodate a wide range of reactions including 1,2-additon, 1,4-addtion, SN2’ reaction (allylic substitution) to the α-carbon of the carbonyl or imine and cycloaddition reactions (e.g. Diels-Alder reaction). Quinonoids are effective building blocks for synthesizing heterocycles, which are ubiquitous in pharmaceutically useful agents. Developing new quinonoid based methodologies is essential to expanding the boundary of synthetic …


Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed Sep 2016

Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed

Dissertations, Theses, and Capstone Projects

Topoisomerases are ubiquitous proteins that alter supercoiling in double stranded DNA (dsDNA) during transcription and replication and. vaccinia and the closely related poxvirus variola virus, at 314 amino acids in length, encode the smallest of the type I topoisomerases(TopIB). TopIB is a two domain protein that recognizes the sequence 5’-T/CCCTT, cleaves at the 3’-end and relaxes supercoiling through rotation. The C-terminal domain (CTD) alone contains the catalytic activity and specificity. Deletion of the N-terminal domain results in a greatly reduced rate of relaxation and rapid dissociation. Biochemical data suggests that the N-terminal domain (NTD) is important for pre-cleavage binding and …


Probing The Structure And Photophysics Of Porphyrinoid Systems For Functional Materials, Christopher D. Farley Sep 2016

Probing The Structure And Photophysics Of Porphyrinoid Systems For Functional Materials, Christopher D. Farley

Dissertations, Theses, and Capstone Projects

Porphyrins (Pors) and their many cousins, including phthalocyanines (Pcs), corroles (Cors), subphthalocyanines (SubPcs), porphyrazines (Pzs), and naphthalocyanines (NPcs), play amazingly diverse roles in biological and non-biological systems because of their unique and tunable physical and chemical properties. These compounds, collectively known as porphyrinoids, can be employed in any number of functional devices that have the potential to address the challenges of modern society. Their incorporation into such devices, however, depends on many structural factors that must be well understood and carefully controlled in order to achieve the desired behavior. Self-assembly and self-organization are key processes for developing these new technologies, …


Electrochemical Nanoprobes For Electron Transfer Kinetics And Electrocatalysis Study, Yun Yu Sep 2016

Electrochemical Nanoprobes For Electron Transfer Kinetics And Electrocatalysis Study, Yun Yu

Dissertations, Theses, and Capstone Projects

The studies of electrochemical processes on the nanoscale have led to a significant progress in understanding of electrochemical mechanisms and characterization of nanomaterials in the fields of energy, catalysis, and biological research. Electrochemical experiments at nanoscale require the fabrication and characterization of nanometer-sized electrochemical probes. The main advantages of the nanoprobes include very fast mass-transfer rate, high signal-to-noise ratio and extremely fine spatial resolution of electrochemical imaging. In the course of my Ph.D. research, different types of electrochemical probes were developed for measuring electron-transfer kinetics, probing single catalytic nanoparticles and sampling ultra-small volume of liquids.

We developed methodologies to fabricate …


Nmr Studies Of Electrochemical Energy Storage Materials, Jing Peng Sep 2016

Nmr Studies Of Electrochemical Energy Storage Materials, Jing Peng

Dissertations, Theses, and Capstone Projects

Electrochemical energy storage materials constitute essential elements in the development of sustainable energy technologies. They are crucial for improving the efficiency of energy storage devices to facilitate the use of renewable resources. The increasing human demands for energy and limitation of fossil fuel stimulates the continued development of energy storage materials. Better understanding of their working mechanisms and electrochemical properties from a view of chemistry is quite necessary for improving the energy storage technology. In this work, Nuclear Magnetic Resonance (NMR) has been used as a powerful tool to characterize the solvation behavior and diffusion ability of some commonly used …


Metabolic Profiling And Polymer Formation Of Gene Silenced Potato Periderms, Qing Cai Sep 2016

Metabolic Profiling And Polymer Formation Of Gene Silenced Potato Periderms, Qing Cai

Dissertations, Theses, and Capstone Projects

Suberin is a biopolyester constituent of specialized plant periderm tissues formed within the phellem cell walls. Suberin and waxes of the periderm layer act to prevent water diffusion, mechanical breakdown and pathogenic invasion in plants. Ferulic esters, ω-hydroxyacids and α,ω-fatty diacids are considered to be the most important linkage between aliphatic and aromatic suberin domains and also linked with cell-wall polysaccharides. The potato gene FHT (fatty ω- hydroxyacid/fatty alcohol hydroxycinnamoyl transferase) esterifies ferulic acid to suberin. Diminished levels of feruloyl transferase activity have been associated with lowered amounts of feruloyl esters of fatty acids in both suberin-associated waxes and suberin …


Metabolic Profiling Of Genetically Modified Potato Periderm Tissues, Liqing Jin Sep 2016

Metabolic Profiling Of Genetically Modified Potato Periderm Tissues, Liqing Jin

Dissertations, Theses, and Capstone Projects

Potato tubers are protected from dehydration and pathogens by a covering peel (periderm) impregnated with suberin, a complex cross-linked biopolymer that contains both polyaliphatic and lignin-like aromatic domains. Current models describing the macromolecular structure of suberin assume that ferulic acid cross-links both domains as it may form carboxyl ester bonds with aliphatic monomers and non-ester radical-coupled bonds with phenolics. Ferulic acid also links by ester bonds to glycans and acts in cross-linking polysaccharides and lignin. Fatty alcohol/ω-hydroxyacid hydroxycinnamoyl transferase (FHT) is a BADH acyltransferase responsible for the synthesis of akyl-ferulates that is necessary for suberin biosynthesis. Periderm from FHT-RNAi …


Development Of New Radiolabeling Methods And Insights On Ionizing Radiation Interactions With Nanoparticles, Travis Shaffer Sep 2016

Development Of New Radiolabeling Methods And Insights On Ionizing Radiation Interactions With Nanoparticles, Travis Shaffer

Dissertations, Theses, and Capstone Projects

Nanoparticles are often combined with radionuclides for various applications, ranging from waste remediation to imaging and therapy in the medical field. The overarching aim of this body of work is two-fold. The first aim is development of new radiolabeling methods for various nanoparticles that allow stable attachment of a variety of imaging and therapeutic radionuclides. The second portion more fully describes mechanisms of interaction between ionizing radiation and nanoparticles.

The following advancements will be presented in this dissertation: i) a new radiolabeling method for silica and silica-based nanoparticles that does not require the use of specific chelators, with both radiochemical …


Sustainable Molecular Gelators: Beta-D-Glucoside Derived Structuring Agents And Their Material Application, Julian R. Silverman Sep 2016

Sustainable Molecular Gelators: Beta-D-Glucoside Derived Structuring Agents And Their Material Application, Julian R. Silverman

Dissertations, Theses, and Capstone Projects

Though molecular gelators may by synthesized and formulated into gels following a variety of methods, it should serve that the most valued methods may utilize renewable and waste resources and follow sustainable procedures. Molecular gelators are systems capable of structuring liquids into solid-like materials and they represent a class of surfactant and amphiphilic materials which posses the capability to be not only useful in their ability to form gels, but multifunctional in the ability to respond smartly to a variety of stimuli. Thus there is an interest in the development of sustainable molecular gelators capable of being applied to applications, …


Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas Jun 2016

Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas

Dissertations, Theses, and Capstone Projects

Newly transcribed precursor messenger RNA (pre-mRNA) molecules contain coding sequences (exons) interspersed with non-coding intervening sequences (introns). These introns must be removed in order to generate a continuous coding sequence prior to translation of the message into protein. The mechanism through which these introns are removed is known as pre-mRNA splicing, a two-step reaction catalyzed be a large macromolecular machine, the spliceosome, located in the nucleus of eukaryotic cells. The spliceosome is a protein-directed ribozyme composed of small nuclear RNAs (snRNA) and hundreds of proteins that assemble in a very dynamic process. One of these snRNAs, the U2 snRNA, is …


Photooxidation Chemistry And Photodynamic Therapy: Pointsource Delivery Of Singlet Oxygen, Sensitizer And Nitrosamine Drugs, Ashwini Anil Ghogare Jun 2016

Photooxidation Chemistry And Photodynamic Therapy: Pointsource Delivery Of Singlet Oxygen, Sensitizer And Nitrosamine Drugs, Ashwini Anil Ghogare

Dissertations, Theses, and Capstone Projects

Eradication of residual tumor cells that are directly adjacent to vital tissue is a daunting challenge to surgeons. Because the field needs advances in intraoperative settings and a means for high-precision delivery of singlet oxygen for photodynamic therapy (PDT) of cancers, this dissertation outlines the development and application of a “pointsource” fiber optic device. The device offers highly localized and simultaneous delivery of sensitizer drug, light, and oxygen (components necessary for PDT) for cancer cell eradication in-vitro and in-vivo. The following chapters describe (a) the photokilling activity and precision of pointsource PDT in monolayer ovarian and brain cancer cells …


Water Condensation And Protein Adsorption On Hybrid Superhydrophobic-Hydrophilic Surfaces, Bikash Mondal Feb 2016

Water Condensation And Protein Adsorption On Hybrid Superhydrophobic-Hydrophilic Surfaces, Bikash Mondal

Dissertations, Theses, and Capstone Projects

This thesis describes the study of protein adsorption and water condensation on hybrid superhydrophobic-hydrophilic surfaces for various technological applications such as diagnostics, artificial organs and medical devices, water collection, and heat transfer.

In the chapter 1, a general introduction to wetting theories, superhydrophobic surface, and hybrid surfaces is given. In chapter 2, design and fabrication of a hybrid superhydrophobic surface for studying dropwise condensation and heat transfer is discussed. Effect of surface chemistry and wettability on protein adsorption is discussed in the chapter 3. Finally, in chapter 4, the protein adsorption study on hybrid superhydrophobic surfaces made by 3D-printing and …


Design Rules For The Nucleation, Growth, And Encapsulation Of Gold Nanoparticles With Applications To Cancer Imaging, Matthew A. Wall Feb 2016

Design Rules For The Nucleation, Growth, And Encapsulation Of Gold Nanoparticles With Applications To Cancer Imaging, Matthew A. Wall

Dissertations, Theses, and Capstone Projects

Surface-enhanced Raman scattering (SERS) nanoparticles are exciting candidates for high-precision cancer imaging due to their highly specific spectral signature (Raman “fingerprint”) and propensity for passive targeting of cancerous tissues. However, the signal intensity of currently available SERS nanoparticles is insufficient for cancer imaging via passive targeting in most solid tumors. The overarching aim of this body of work is to develop a new generation of SERS nanoparticles with sufficiently low limits of detection to enable robust detection of various solid tumors in vivo.

The complexity of SERS nanoparticles requires significant advances to the theoretical and experimental understanding of metal …


Synthesis And Characterization Of Segmented Fluorescent Conjugated Polymers Via Acyclic Diene Metathesis (Admet), Gagandeep Singh Feb 2016

Synthesis And Characterization Of Segmented Fluorescent Conjugated Polymers Via Acyclic Diene Metathesis (Admet), Gagandeep Singh

Dissertations, Theses, and Capstone Projects

This doctoral thesis is focused on the novel and facile synthesis and characterization of segmented conjugated polymers featuring various electro-optically active segments, with or without heteroatom linkages. The polymers were synthesized, via acyclic diene metathesis (ADMET) using ruthenium-based Grubbs-type catalysts. All products are soluble, and have a well-defined all-trans microstructure without defects. Some of the polymers were also synthesized via Suzuki polycondensation for comparison purposes. All monomers utilized were designed and synthesized in the laboratory.

Segmented conjugated polymers have received a great deal of attention in organic electronics, such as organic light emitting-diodes, organic field-effect transistors and organic solar …


Synthesis Of Novel Aporphine-Inspired Neuroreceptor Ligands, Nirav R. Kapadia Feb 2016

Synthesis Of Novel Aporphine-Inspired Neuroreceptor Ligands, Nirav R. Kapadia

Dissertations, Theses, and Capstone Projects

Aporphines are a group of tetracyclic alkaloids that belong to the ubiquitous tetrahydroisoquinoline family. The aporphine template is known to be associated with a range of biological activities. Aporphines have been explored as antioxidants, anti-tuberculosis, antimicrobial and anticancer agents. Within the Central Nervous Systems (CNS), aporphine alkaloids are known to possess high affinity for several clinically valuable targets including dopamine receptors (predominantly D1 and D2), serotonin receptors (5-HT1A and 5-HT7) and α adrenergic receptors. Aporphines are also inhibitors of the acetylcholinesterase enzyme – a clinical target for the treatment of Alzheimer’s disease. Considering the …


Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor Feb 2016

Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor

Dissertations, Theses, and Capstone Projects

The energy transfers and nature of defect levels of an organic/inorganic composite of Zinc Oxide and Graphite are studied with multidimensional spectroscopy. The edge and surface states of each composite are uncovered using excitation emission experiments showing which defect states are mediating the energy transfer from the metal oxide to the graphite oxide. Multidimensional time resolved spectroscopy further describes the effect of the carbon phase on the energy transfer pathways in the material.


Characterization Of 1, 4, 7-Trithiacyclononane, [9]Anes3 As A Potential Toxic Heavy Metal Chelator, Nahid Bakhtari Jan 2016

Characterization Of 1, 4, 7-Trithiacyclononane, [9]Anes3 As A Potential Toxic Heavy Metal Chelator, Nahid Bakhtari

Student Theses and Dissertations

Toxic heavy metal poisoning with metals including lead, mercury, and cadmium, whether in the environment or through ingestion, remains a persistent problem. Remediation of metal contamination and poisoning has generally been treated with chelating agents that bind metals, rendering them inert, and allow for easier removal. Chelation involves the formation of two or more separate coordinate covalent bonds between a polydentate ligand and a single central atom. However, chelators are not without side effects. Due to the similar size of metal ions and lack of specificity of ligands, chelators can also remove beneficial metals like iron and zinc from the …


Adsorption Of Antibiotics By Vermiculite, Mosa J. Ferdous Jan 2016

Adsorption Of Antibiotics By Vermiculite, Mosa J. Ferdous

Dissertations and Theses

The occurrence of residual antibiotics in the environment has been a worldwide issue and warrants the development of inexpensive yet effective methods for antibiotics removal from contaminated water. In this thesis work, the adsorption of four antibiotics, namely chlorotetracycline (CTC), oxytetracycline (OTC), ofloxacin (OFL), and enrofloxacin (ENR), onto natural vermiculite has been studied using batch (static) and column (dynamic) adsorption techniques. The Langmuir and Freundlich isotherm models were initially used to explain the adsorption processes. The separation factor (RL) values derived from the Langmuir model and the 1/n values derived from Freundlich model in the present investigation were less than …


Julia-Kocienski Approach To 4-Substituted 1- Alkenyl-1h-1,2,3-Triazoles, Kunga Tsetan Jan 2016

Julia-Kocienski Approach To 4-Substituted 1- Alkenyl-1h-1,2,3-Triazoles, Kunga Tsetan

Dissertations and Theses

A modular approach to the synthesis of 4-substituted N-vinyltriazoles was
developed. The triazole cores were assembled by copper-catalyzed 1,3-dipolar
cycloaddition of 1-phenyl-1H-tetrazol-5-yl (PT) azidomethyl sulfide with: pmethoxyphenyl, 2-pyridyl, and triisopropylsilyl alkynes. Subsequent oxidation of the sulfides furnished 4-substituted triazoles with a Julia-Kocienski olefination handle attached at the N1 atom of the triazole. Olefination reactions of triazole-derived Julia-Kocienski reagents with paraformaldehyde gave 1-ethenyl-1H-1,2,3-triazoles. Heck reactions of these products with phenyl or p-methoxyphenyl iodide led to further functionalization of the terminal carbon, with E/Z-olefin ratios ≥ 92%. Heck reaction with p-cyanophenyl iodide gave low conversion, and that with 2-thienyl iodide did not …