Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren Aug 2017

Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and …


Metabolic Comparison Of Wild-Type And Transgenic Synechocystis Pcc 6803 Cyanobacteria, Ian A. Mcluckey, John A. Morgan, Joel Yu King Hing Aug 2017

Metabolic Comparison Of Wild-Type And Transgenic Synechocystis Pcc 6803 Cyanobacteria, Ian A. Mcluckey, John A. Morgan, Joel Yu King Hing

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Calvin-Benson (CBB) cycle is an essential part of nature. This phenomenon allows carbon molecules in carbon dioxide from the atmosphere to be converted into useful energy in the form of sugars. Cyanobacteria are single-celled organisms capable of utilizing energy from sunlight to drive this cycle and are also readily engineered. In hopes of improving this cycle, we compared a wild-type version of the Synechocystis PCC6803 cyanobacteria to an engineered version overexpressing the enzyme FBA (fructose-biphosphate aldolase), called 70 glpX, to deduce how the overexpressing strain is able to be more photosynthetically efficient. To do this, comparative metabolomics were done …