Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Entire DC Network

Droplet-Based Two-Phase Thermal Management, Junhui Li Aug 2022

Droplet-Based Two-Phase Thermal Management, Junhui Li

McKelvey School of Engineering Theses & Dissertations

The rapid development of electronic systems with ever-higher power densities in a wide range of applications requires new advanced thermal management methods. Droplet-based two-phase thermal management technologies are considered promising solutions to conquer the cooling challenges in the electronic industries. The heat transfer behavior of droplets is based on several important fundamental processes, such as droplet evaporation, droplet impact on heated surfaces, and molten droplet impact. In this dissertation, four research projects are completed to explore the insights of these fundamental processes. For droplet evaporation, I introduce an investigation of diffusion confinement of droplets evaporating on a supported pillar structure. …


Free Convection Heat Transfer From Plates, Alexa Moreno May 2022

Free Convection Heat Transfer From Plates, Alexa Moreno

Chemical Engineering Undergraduate Honors Theses

The purpose of this honors thesis is to create an experiment for the CHEG Lab I course. This report explains the motivation for creating this heat convection experiment, the results of performing the experiment, and provides recommendations for future work on this experiment. Multiple experiments were performed to assess materials and parameters to be investigated. It was determined that a 0.5” plate has smaller percent error and accommodates for the desired timeframe for a Lab I experiment compared to the first plate used (1.5” thickness). Recommendations for expanding on this project include adding experiments using vertical geometry for heat convection …


Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Material Properties And Heat Transfer Parameters In Compression Molding Of Glass Mat Thermoplastics, Cheng Xu Oct 2020

Material Properties And Heat Transfer Parameters In Compression Molding Of Glass Mat Thermoplastics, Cheng Xu

Electronic Thesis and Dissertation Repository

The compression molding of glass mat thermoplastics (GMT) allows high volume manufacture of composite parts with a short production cycle. Computer simulation is often used to assist process development and optimization. Reliable simulation depends on input of material property parameters and accurate prediction of heat transfer. This thesis developed experimental methods to characterize material property and heat transfer process parameters. Results were obtained by applying the methods to a selected commercial GMT sheet. Heat transfer coefficients including convection coefficients during pre-heating and transfer, as well as contact conductance at sheet-mold interface were estimated by a parameter-fitting approach. Viscoelastic parameters of …


Customized Boron And Magnesium-Based Reactive Materials Prepared By High Energy Mechanical Milling, Xinhang Liu Dec 2019

Customized Boron And Magnesium-Based Reactive Materials Prepared By High Energy Mechanical Milling, Xinhang Liu

Dissertations

New reactive materials need to be developed having biocidal combustion products. When ignited, such material can add chemical biocidal effects to the common effects of high temperature and pressure. Biocidal combustion products are capable of deactivating harmful spores or bacteria, which can be released by targets containing biological weapons of mass destruction. Research showed that halogens, especially iodine, are effective as biocidal components of reactive material formulations. Recently, magnesium combustion product MgO is also found to have a biocidal effect. Thus, advanced formulations containing both magnesium and iodine are of interest; such formulations are prepared and investigated here.

Reactive materials …


Characterization Of Pyrolysis Products From Fast Pyrolysis Of Live And Dead Vegetation, Mohammad Saeed Safdari Dec 2018

Characterization Of Pyrolysis Products From Fast Pyrolysis Of Live And Dead Vegetation, Mohammad Saeed Safdari

Theses and Dissertations

Wildland fire, which includes both planned (prescribed fire) and unplanned (wildfire) fires, is an important component of many ecosystems. Prescribed burning (controlled burning) is used as an effective tool in managing a variety of ecosystems in the United States to reduce accumulation of hazardous fuels, manage wildlife habitats, mimic natural fire occurrence, manage traditional native foods, and provide other ecological and societal benefits. During wildland fires, both live and dead (biomass) plants undergo a two-step thermal degradation process (pyrolysis and combustion) when exposed to high temperatures. Pyrolysis is the thermal decomposition of organic material, which does not require the presence …


Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon Jun 2016

Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon

Mechanical Engineering

Evacuated tube solar collectors are efficient systems that use heat pipes to facilitate heat transfer. They use incoming solar radiation to heat water. Professor Mason Medizade tasked the team with choosing a component of the system to research and test its influence on system performance. The team investigated the working fluid that runs through the heat pipes. Distilled water, acetone, and ethanol at a range of fill volumes form 1 mL to 11 mL were tested. The team's goal was to find a volume for each fluid to maximize performance of the system. Performance was defined as average temperature rise …


A Model For Complex Heat And Mass Transport Involving Porous Media With Related Applications, Furqan A. Khan Apr 2016

A Model For Complex Heat And Mass Transport Involving Porous Media With Related Applications, Furqan A. Khan

Electronic Thesis and Dissertation Repository

Heat and mass transfer involving porous media is prevalent in, for example, air-conditioning, drying, food storage, and chemical processing. Such applications require non-equilibrium heat and mass (or moisture) transfer modeling inside porous media in conjugate fluid/porous/solid framework. Moreover, modeling of turbulence and turbulent heat and mass transfer becomes essential for many applications. A comprehensive literature review shows a scarcity of models having such capabilities. In this respect, the objectives of the present thesis are to: i) develop a formulation that simulates non-equilibrium heat and mass transfer in conjugate fluid/porous/solid framework, ii) demonstrate the capabilities of the developed formulation by simulating …


Study Of Heat Transfer Phenomenon During Natural Convection, Muhammad Yousaf Jan 2016

Study Of Heat Transfer Phenomenon During Natural Convection, Muhammad Yousaf

Doctoral Dissertations

"The purpose of the present study was to numerically investigate the effects of the roughness elements on the heat transfer during natural convection. A computational algorithm was developed based on the Lattice Boltzmann method to conduct numerical study in two-dimensional rectangular cavities and Rayleigh-Bénard cell. A single relaxation time Bhatnagar-Gross-Krook model of Lattice Boltzmann method was used to solve the coupled momentum and energy equations in two-dimensional lattices. Computational model was validated against previous benchmark solutions, and a good agreement was found to exist. A Newtonian fluid of Prandtl (Pr) number 1.0 was considered for this numerical study. The range …


Computational Fluid Dynamics Analysis Of Freeze Drying Process And Equipment, Nikhil P. Varma Oct 2014

Computational Fluid Dynamics Analysis Of Freeze Drying Process And Equipment, Nikhil P. Varma

Open Access Theses

Freeze drying is an important, but expensive, inefficient and time consuming process in the pharmaceutical, chemical and food processing industries. Computational techniques could be a very effective tool in predictive design and analysis of both freeze drying process and equipment. This work is an attempt at using Computational Fluid Dynamics(CFD) and numerical simulations as a tool for freeze drying process and equipment design.

Pressure control is critical in freeze dryers, keeping in view the product stability. In industrial freeze dryers, loss of pressure control can lead to loss of an entire batch. Pressure variation within the chamber could also lead …


Measurement And Modeling Of Fire Behavior In Leaves And Sparse Shrubs, Dallan R. Prince Jul 2014

Measurement And Modeling Of Fire Behavior In Leaves And Sparse Shrubs, Dallan R. Prince

Theses and Dissertations

Wildland fuels and fire behavior have been the focus of numerous studies and models which provide operational support to firefighters. However, fuel and fire complexity in live shrubs has resulted in unexpected and sometimes aggressive fire behavior. The combustion of live fuels was studied and modeled, and the results were assimilated into a shrub-scale fire behavior model which assumes fire spread by flame-fuel overlap. Fire spread models have usually assumed that radiation heat transfer is responsible for driving fire spread, but that assumption is a topic of continuing debate, and appears to contradict some experimental observations. A convection-based shrub-scale fire …


Comparison Of Horizontal Ground Source (Geothermal) Heat Pump Layouts For Optimal Performance And Thermal Efficiency, Elizabeth M. Bocchino Jun 2011

Comparison Of Horizontal Ground Source (Geothermal) Heat Pump Layouts For Optimal Performance And Thermal Efficiency, Elizabeth M. Bocchino

Honors Theses

This study investigates the difference in thermal efficiencies of horizontal ground source heat pump layouts through computer simulation and experimental modeling. The main objective of this project was to determine if the shape of the layout affects the total heat exchange in a horizontal geothermal system. Geothermal energy is power extracted from the Earth and studies have been focused on increasing the efficiency of the heat transfer from the Earth to the system. Steady state and transient thermal analyses were conducted on two horizontal layout shapes, a U-loop and a coil, in ANSYS Fluent. This system was not full size, …


Mechanistic Modeling Of An Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide, Faisal Abdullah Aladwani Jan 2007

Mechanistic Modeling Of An Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide, Faisal Abdullah Aladwani

LSU Doctoral Dissertations

Mechanistic modeling of an underbalanced drilling operation using carbon dioxide has been developed in this research. The use of carbon dioxide in an underbalanced drilling operation eliminates some of the operational difficulties that arises with gaseous drilling fluids, such as generating enough torque to run a downhole motor. The unique properties of CO2, both inside the drill pipe and in the annulus are shown in terms of optimizing the drilling operation by achieving a low bottomhole pressure window. Typically CO2 becomes supercritical inside the drill pipe at this high density; it will generate enough torque to run …


Feasibility Of Supercritical Carbon Dioxide As A Drilling Fluid For Deep Underbalanced Drilling Operations, Anamika Gupta Jan 2006

Feasibility Of Supercritical Carbon Dioxide As A Drilling Fluid For Deep Underbalanced Drilling Operations, Anamika Gupta

LSU Master's Theses

Feasibility of drilling with supercritical carbon dioxide to serve the needs of deep underbalanced drilling operations has been analyzed. A case study involving underbalanced drilling to access a depleted gas reservoir is used to illustrate the need for such a research. For this well, nitrogen was initially considered as the drilling fluid. Dry nitrogen, due to its low density, was unable to generate sufficient torque in the downhole motor. The mixture of nitrogen and water, stabilized as foam generated sufficient torque but made it difficult to maintain underbalanced conditions. This diminished the intended benefit of using nitrogen as the drilling …


Online Heat Transfer Measurement And Analysis For Sugar Mill Evaporators, David Timothy Solberg Jan 2004

Online Heat Transfer Measurement And Analysis For Sugar Mill Evaporators, David Timothy Solberg

LSU Master's Theses

Fouling and scaling in evaporators has been an area of great interest to raw sugar mills for a number of years and many of the mechanisms causing the scale and the rates of scaling are unknown. In an attempt to quantify the scaling rates and measure the scaling, an online model has been developed to model a system of evaporators. Monitoring the heat transfer coefficient as a function of time enabled measurement of the scaling rate by monitoring the heat transfer coefficient as it decreased with time. It is assumed that the scaling on the juice side of the evaporators …