Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 210

Full-Text Articles in Entire DC Network

Research On 3d Printing Resin Exposure Properties And Its Application On Centrifugal Microfluidic Platform Based On Fluorescence Detection, Zheng Qiao Apr 2024

Research On 3d Printing Resin Exposure Properties And Its Application On Centrifugal Microfluidic Platform Based On Fluorescence Detection, Zheng Qiao

LSU Doctoral Dissertations

This dissertation encapsulates significant advancements in the field of SLA 3D printing and centrifugal microfluidics. Central to the research is the development of a novel mathematical model for predicting trapped resin thickness in SLA 3D printing, a groundbreaking contribution that addresses a critical aspect of printing intricate structures. This model, the first to establish a mathematical relationship for resin thickness, is rooted in a comprehensive study of the resin curing process. The research leverages the concept of 'critical dosage' for resin curing, leading to a more refined and theoretically grounded approach for calculating curing thickness. Experimentation further validates the model, …


Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq Jan 2023

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq

LSU Doctoral Dissertations

Colloids are a ubiquitous class of materials composed of microscopic particles suspended in a continuous phase which are found in everyday products and in nature. Colloids are also useful models for studying the spontaneous arrangement of matter from individual building blocks to mesophases. Standard treatment of colloid science is based on the assumption of equilibrium conditions, as defined in traditional thermodynamics. However, novel assembly mechanisms and motility are unlocked by pushing colloids away from equilibrium using external energy. In addition, many colloids in nature and in industrial applications exchange energy and mass with the surrounding environment thus behaving in a …


Computational Study Of C-C Coupling Reactions On Heterogeneous Catalysts, Md Saeedur Rahman Jan 2023

Computational Study Of C-C Coupling Reactions On Heterogeneous Catalysts, Md Saeedur Rahman

LSU Doctoral Dissertations

The utilization of carbon dioxide (CO2) in chemical production has attracted global research interest. Reacting CO2 with methane (CH4) removes these greenhouse gases from the atmosphere and turns both compounds into building blocks for organic compound synthesis. A commonly explored pathway involves dry reforming of methane (DRM), which reacts CH4 and CO2 to form syngas, a mixture of H2 and CO. Syngas is a widely used feedstock for synthesizing chemicals ranging from methanol to fuels via the Fischer-Tropsch (FT) process. However, DRM has a large positive ΔGº, which requires the …


Application Of Distributed Fiber-Optic Sensing For Pressure Predictions And Multiphase Flow Characterization, Gerald Kelechi Ekechukwu Dec 2022

Application Of Distributed Fiber-Optic Sensing For Pressure Predictions And Multiphase Flow Characterization, Gerald Kelechi Ekechukwu

LSU Doctoral Dissertations

In the oil and gas industry, distributed fiber optics sensing (DFOS) has the potential to revolutionize well and reservoir surveillance applications. Using fiber optic sensors is becoming increasingly common because of its chemically passive and non-magnetic interference properties, the possibility of flexible installations that could be behind the casing, on the tubing, or run on wireline, as well as the potential for densely distributed measurements along the entire length of the fiber. The main objectives of my research are to develop and demonstrate novel signal processing and machine learning computational techniques and workflows on DFOS data for a variety of …


Bioremediation Of Petroleum-Based Contaminants By Alkane-Degrading Bacterium Alcanivorax Borkumensis, Amber Julaine Pete Jul 2022

Bioremediation Of Petroleum-Based Contaminants By Alkane-Degrading Bacterium Alcanivorax Borkumensis, Amber Julaine Pete

LSU Doctoral Dissertations

The world’s dependence on petroleum hydrocarbons has led to significant environmental implications. For example, oil spills cause lasting environmental damage, and the increase of plastics in the marine environment has been growing, specifically, microplastics that can be difficult to detect due to their small size. Petroleum hydrocarbons occur naturally in nearly all marine environments, which has allowed hundreds of microorganisms to evolve to utilize these hydrocarbons as their primary energy source. These microbes are classified as hydrocarbonoclastic and are utilized to remove spilled oil biodegradation. Over the last ten years, progress has been made in the biodegradation of oil spills …


A Drift-Flux Model For Upward Two-Phase In Pipes With High Velocity Flows, Woochan Lee May 2022

A Drift-Flux Model For Upward Two-Phase In Pipes With High Velocity Flows, Woochan Lee

LSU Doctoral Dissertations

This study proposes the evaluation and development of a drift-flux model for upward two-phase high-velocity flow in large diameter pipes. A case where the proposed model is applicable is WCD (Worst-Case-Discharge) calculations for offshore wells. WCD assumes relatively larger pipe diameters and higher flow rates than the flow experiments at laboratory conditions utilized to validate and develop most of the flow models available in the literature.

Most of the two-phase flow models describe flow regime transitions as discrete processes by assigning the required void fraction or velocity for each flow regime transition. Therefore, for each flow regime, flow-regime-dependent correlations or …


Assembly Of Nanostructures At Solid-Liquid And Liquid-Air Interfaces, Yingzhen Ma Apr 2022

Assembly Of Nanostructures At Solid-Liquid And Liquid-Air Interfaces, Yingzhen Ma

LSU Doctoral Dissertations

Molecular and nanoscale colloids such as surfactant, fatty acid and metallic nanoparticles are widely used in numerous applications such as detergents, biomedicine, and catalyst. The assemblies of these colloids show different morphological behavior in aqueous solution due to the wide range of intermolecular interactions such as hydrogen bonding, van der Waals, and electrostatics. The morphology of these assemblies can be changed by environmental factors including temperature, ionic strength, and salinity. However, the guidance to direct assembled state of colloidal assemblies at heterogenous interfaces under various external stimuli remains poorly understand. In this Ph.D. dissertation, we show the adsorption and reconfiguration …


Tuning Electrochemical Interactions And Polymer Electrolyte Interfaces For Enhanced Organic Acid Separations Using Electrodeionization, Matthew Leo Jordan Mar 2022

Tuning Electrochemical Interactions And Polymer Electrolyte Interfaces For Enhanced Organic Acid Separations Using Electrodeionization, Matthew Leo Jordan

LSU Doctoral Dissertations

Chemical separations are critical processes for chemical and industrial plants to purify and isolate products however current separation technologies, such as distillation, rely on energy intensive processes. Electrochemical separation processes, such as electrodialysis and electrodeionization, are an energy efficient alternative that are emerging as an alternative for thermal-based separations. Organic acids are weakly ionizable species and susceptible for purification from process streams using electrochemical processes. Recently the fermentation route has garnered greater attention as a means for producing value-added chemicals, such as organic acids, from a renewable feedstock and aiding the circular economy. Some of the challenges electrodialysis faces for …


Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath Mar 2022

Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath

LSU Doctoral Dissertations

The mechanisms of ambient-temperature reactions of heteroatomic compounds catalyzed by ceria (CeO2), an archetypical reducible oxide, for enzyme mimetics, environmental protection, and chemical synthesis are investigated in this dissertation using theoretical methods. CeO2 is modeled with thermodynamically stable low-index surfaces exposed by commonly studied ceria thin films and nano particles. To understand phosphatase-like dephosphorylation activity, stable adsorption states and surface reactions of model phosphates are examined. Binding of the central P-atom to surface lattice oxygen (Olatt) supplemented by phosphoryl O-Ce interaction is the only stable adsorption state for the un-dissociated molecule. Deprotonation of phosphate monoesters, …


Reaction Pathways Of Molecular Growth For Bay-Region Methyl-Substituted Polycyclic Aromatic Hydrocarbons During Supercritical Pyrolysis Of N-Decane, Venkata Sai Krishna Karthik Vutukuru Nov 2021

Reaction Pathways Of Molecular Growth For Bay-Region Methyl-Substituted Polycyclic Aromatic Hydrocarbons During Supercritical Pyrolysis Of N-Decane, Venkata Sai Krishna Karthik Vutukuru

LSU Doctoral Dissertations

Prior to its combustion, fuel for future-highspeed aircraft will experience supercritical conditions, causing the fuel to undergo pyrolytic reactions that lead to the formation of polycyclic aromatic hydrocarbons (PAH), precursors to fuel-line solids that hinder aircraft’s safe operation. Therefore, understanding the formation pathways of PAH under supercritical conditions is important to preventing formation of these solids.

Previous work from our group has shown that n-alkanes are particularly problematic regarding solids formation and that the model fuel n-decane produces an abundance of aliphatics and one- to nine-ring aromatics—many of which are methyl-substituted. Some of these methyl-substituted PAH have their …


Application Of Gas-Assisted Gravity Drainage (Gagd) Process For Enhancing Recovery From Unconventional Resources, Muzher Al Musabeh Nov 2021

Application Of Gas-Assisted Gravity Drainage (Gagd) Process For Enhancing Recovery From Unconventional Resources, Muzher Al Musabeh

LSU Doctoral Dissertations

The oil recovery with hydraulic fracturing has played an important role in hydrocarbon production and energy support last decade from unconventional resources. Characteristically, the significant production decline and low recovery factors from these reservoirs triggered the need for new EOR techniques to compensate for the decline and help sustain the production. In this study, an experimental investigation of the Gas-Assisted Gravity Drainage (GAGD) process in the presence of fractures as EOR process was conducted using Nitrogen (N2) and Carbon Dioxide (CO2) in Berea Sandstone (BSS) and Tuscaloosa Marine Shale (TMS). Core flooding and EOR experiments were used to determine the …


Engineering The Surface Of Fe3o4 Nanoparticles For Catalytic And Magnetic Applications, Natalia Da Silva Moura Aug 2021

Engineering The Surface Of Fe3o4 Nanoparticles For Catalytic And Magnetic Applications, Natalia Da Silva Moura

LSU Doctoral Dissertations

With the rapid depletion of the U.S. energy resources coupled with population growth, heat management technologies must be improved to sustain our quality of life. Precisely, in catalysis, it is estimated that only ~50% of the energy supplied to the reactor is used for product conversion due to dissipation losses. Among the emerging technologies with a promising reduction in heat losses is induction heating, offering targeted heat delivery with magnetic nanoparticles. Under alternating magnetic fields (AMF), these nanoparticles can absorb the energy from Radio-Frequency (RF) fields and dissipate it as heat on the nanoparticle surface. This in situ heat generation …


Direct Activation Of Light Alkanes To Value-Added Chemicals Using Supported Metal Oxide Catalysts, Md Ashraful Abedin Aug 2021

Direct Activation Of Light Alkanes To Value-Added Chemicals Using Supported Metal Oxide Catalysts, Md Ashraful Abedin

LSU Doctoral Dissertations

One of the most challenging aspects of modern-day catalysis is the conversion of methane. Direct conversion of methane via dehydroaromatization (MDHA) is a well-known process which can produce valuable hydrocarbons. Mo oxide supported on ZSM-5/MCM-22 has been studied extensively in recent years for MDHA. Mo carbides are responsible for activating methane by forming CHx species. These are dimerized into C2Hy and oligomerized on ZSM-5/MCM-22 Brønsted acid sites to form aromatics. Sulfated zirconia (SZ) supported Mo catalyst contains the acid sites necessary to produce benzene in MDHA. Here, sulfated hafnia (SH), a homologous oxide like SZ, has been proposed to provide …


High Temperature Polymer Electrolytes For Hydrogen Fuel Cells And Electrochemical Pumps, Gokul Venugopalan Apr 2021

High Temperature Polymer Electrolytes For Hydrogen Fuel Cells And Electrochemical Pumps, Gokul Venugopalan

LSU Doctoral Dissertations

Hydrogen fuel cell and separation technologies such as proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pump (ECHP) offer a profound advantage in the transition to a low-carbon economy. An imperative hitch in hydrogen fuel cells and ECHP technology has been the electrocatalyst poisoning by carbon monoxide (CO) and other contaminants in the reactant mixture. By operating, hydrogen fuel cells and ECHPs at high temperatures (>200 °C), the effect of CO adsorption on the electrocatalyst surface could be curtailed. The high-temperature operation of devices necessitates a proton exchange membrane (PEM) to operate under anhydrous conditions.

In this work, …


Adsorption And Transport Of Colloids At Interface And In Bulk, Jingyun Lee Mar 2021

Adsorption And Transport Of Colloids At Interface And In Bulk, Jingyun Lee

LSU Doctoral Dissertations

Colloids are suspensions of microscopic insoluble particles dispersed in a continuum phase such as liquid or gas. Colloids are found in our everyday life from food and cosmetic industries to pharmaceutical and biomedical applications. Depending on a global minimum of the free-energy landscape, colloidal suspensions can be classified as two major classes: equilibrium or active colloidal system. This Ph.D dissertation presents strategies to engineer equilibrium self-assembled structures and out-of-equilibrium active matter using various interparticle forces.

First, we introduce the means to promote the equilibrium self-assembled structures driven by adsorption of colloids at interface. Typically, adsorption of colloids at interface is …


Gold-Semiconductor Photocatalysts For Water Treatment Under Visible And Ultraviolet Light, Daniel Willis Mar 2021

Gold-Semiconductor Photocatalysts For Water Treatment Under Visible And Ultraviolet Light, Daniel Willis

LSU Doctoral Dissertations

Water scarcity threatens the lives of millions of people worldwide. It is imperative to improve the energy efficiency and affordability of water treatment methods to avoid a looming water-energy crisis. To meet this challenge, I have pursued research on the use of sunlight—our most reliable and abundant source of energy—to drive water treatment through photocatalysis. I explored the literature and found gold-semiconductor materials to hold promise for harvesting sunlight and catalyzing the breakdown of waterborne contaminants. Initially, I designed a novel optical cavity with gold (Au) nanoparticles on a zinc oxide / titania (TiO2) / aluminum film stack …


A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare Mar 2021

A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare

LSU Doctoral Dissertations

Shale oil reservoirs are prolific on the short term due to hydraulic fracturing and horizontal drilling but experience significant production decline, leading to poor ultimate recovery and leaving billions of barrels of oil buried in the ground. In this study, a systematic multi-scale investigation of an enhanced oil recovery (EOR) process using relatively inexpensive silicon dioxide nanoparticles and carbon dioxide for shale oil reservoirs was conducted. Using the Tuscaloosa Marine Shale (TMS) as a case study, aqueous dispersions of nanosilica in conjunction with CO2 were investigated at nano-to-core scales. At the nanoscale, atomic force microscope was used to investigate …


Defect Engineering In Strained Low-Dimensional Abo3 Perovskite Nanoparticles For Next-Generation Energy Storage, Tochukwu Ofoegbuna Mar 2021

Defect Engineering In Strained Low-Dimensional Abo3 Perovskite Nanoparticles For Next-Generation Energy Storage, Tochukwu Ofoegbuna

LSU Doctoral Dissertations

The realization of renewable energy is dependent on the advancement of multi-functional materials for energy storage devices. As an example, the substantial progress observed in Li-ion batteries is a result of the discovery and subsequent industrial commercialization of cathode materials such as LiFePO4 (LFP). Although these materials possess relatively high specific capacity (~170 mAh/g), their low room-temperature electronic conductivity has been identified as a limitation for future high-performance batteries. Metastable SrBO3, (SBO, B = Nb, Ta, Mo, etc.) perovskite nanoparticles (NPs) with metallic properties offer an alternative route to improve the room-temperature electronic conductivity of LFP cathodes. …


Experimental And Modeling Study Of The Effects Of Sealing Structures In Lost Circulation Prevention And Remediation, Mingzheng Yang Mar 2021

Experimental And Modeling Study Of The Effects Of Sealing Structures In Lost Circulation Prevention And Remediation, Mingzheng Yang

LSU Doctoral Dissertations

Drilling fluid lost circulation leads to non-productive time and increases the overall well cost. In general, wellbore strengthening and lost circulation control are achieved by creating effective sealing structures to inhibit fluid flow through loss conduits such as formation fractures. This research aims at better understanding the effects of sealing structures in fluid loss prevention and remediation, and providing useful references to effectively establishing filtercakes on the wellbore and plugs in the fracture.

Recent research on wellbore strengthening disclosed the critical role of filtercake in sealing microfractures during the initial stages of fracture initiation and propagation. The performance of a …


Photoluminescent Nanomaterials For Biosensing And Single Cell Analysis Applications, Khashayar Ramezani Bajgiran Mar 2021

Photoluminescent Nanomaterials For Biosensing And Single Cell Analysis Applications, Khashayar Ramezani Bajgiran

LSU Doctoral Dissertations

The bioanalytical industry is projected to generate $36 billion by 2025, with the United States currently holding 80.9% of the consumers’ market. Among the bioanalytical platforms, point-of-care (POC) and point-of-use diagnosis (POU) have gained a lot of attention due to their emphasis on decentralized testing and providing low-cost solutions in resource-limited regions. While Traditional bioanalytical tools such as enzyme-linked immunosorbent assay and flow cytometry can sensitively detect biomolecules and screen single-cell response, they suffer from multiple drawbacks such as the high cost of antibodies and time-intensive procedures, which limit their ability to expand to POC/POU applications. Rapid developments in microtool …


A Microscale Approach To Investigate Breast Cancer Cellular Communication And Migration, Sharif Mohammad Mizanur Rahman Jan 2021

A Microscale Approach To Investigate Breast Cancer Cellular Communication And Migration, Sharif Mohammad Mizanur Rahman

LSU Doctoral Dissertations

Metastatic breast cancer significantly decreases patient survival, with the majority of deaths caused by secondary metastasis. Cancer metastasis is a multi-step process that starts with the detachment of a cancer cell from the primary tumor and ends with establishing a secondary tumor at a distal location. This work's focus was to use an interdisciplinary microscale approach to study how cancer cells respond to neighboring cells and how they migrate in response to chemical gradients. Two distinct devices, a microfluidic device, and a 3D-printed plate insert, were developed to perform co-culture studies to elucidate the impact of ASCs on cancer cell …


An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang Dec 2020

An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang

LSU Doctoral Dissertations

Foam is one of the most common used multiphase fluid in Underbalanced Drilling (UBD) and Managed Pressure Drilling (MPD). Because of its low density, high capacity of lifting and carrying cuttings, low cost and compatibility with formations, foam has become more superior than the conventional drilling mud when depleted reservoir pressure, severe lost circulation, or unstable borehole are encountered. In general, the success of foam applications rely on the understanding of the fundamentals of foam rheology in downhole conditions.

Foam rheology has been studied for decades. Conventional foam rheological models such as Power Law, Bingham Plastic, Herschel-Bulkley to explain foam …


Machine Learning Based Applications For Data Visualization, Modeling, Control, And Optimization For Chemical And Biological Systems, Yan Ma Dec 2020

Machine Learning Based Applications For Data Visualization, Modeling, Control, And Optimization For Chemical And Biological Systems, Yan Ma

LSU Doctoral Dissertations

This dissertation report covers Yan Ma’s Ph.D. research with applicational studies of machine learning in manufacturing and biological systems. The research work mainly focuses on reaction modeling, optimization, and control using a deep learning-based approaches, and the work mainly concentrates on deep reinforcement learning (DRL). Yan Ma’s research also involves with data mining with bioinformatics. Large-scale data obtained in RNA-seq is analyzed using non-linear dimensionality reduction with Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP), followed by clustering analysis using k-Means and Hierarchical Density-Based Spatial Clustering with Noise (HDBSCAN). This report focuses …


Fluid-Driven Fracture Initiation From Oil And Gas Wells Considering Lifetime Stresses, Andreas Michael Nov 2020

Fluid-Driven Fracture Initiation From Oil And Gas Wells Considering Lifetime Stresses, Andreas Michael

LSU Doctoral Dissertations

Fluid-driven fracture initiation from oil and gas wells is examined in detail. The dissertation covers three subtopics: drilling, completion (stimulations), and post-blowout capping-induced fracture initiation.

Drilling-induced tensile fractures (DITFs) are located in an azimuth orthogonal to wellbore breakouts and are observed from image logs obtained during drilling operations. Fully analytical criteria for the orientation of DITFs initiating from wells in porous, permeable media are derived considering fluid infiltration from a pressurized wellbore. DITF orientation (longitudinal or transverse-to-the-wellbore) is used to constrain the magnitude of the local maximum horizontal principal stress. The range of the possible stress states is indicated on …


Incorporation Of Lignin In Natural And Synthetic Biomaterials To Alter Mechanical And Biochemical Properties For Enhanced Wound Healing, Jorge Alfonso Belgodere Nov 2020

Incorporation Of Lignin In Natural And Synthetic Biomaterials To Alter Mechanical And Biochemical Properties For Enhanced Wound Healing, Jorge Alfonso Belgodere

LSU Doctoral Dissertations

It is estimated that chronic, non-healing wounds affect more than 6.5 million Americans annually, with an estimated healthcare cost beyond $14 billion. Here, we attempted to create composites of natural (collagen type I or gelatin-methacrylate) or synthetic (poly(ethylene glycol) polymers incorporating a natural plant component, lignin, to combat the costs and limitations current wound healing methods face. Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in plant tissue, we found that sodium …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


Pressure Monitoring For Subsurface Leakage Characterization, Mojtaba Mosaheb Jul 2020

Pressure Monitoring For Subsurface Leakage Characterization, Mojtaba Mosaheb

LSU Doctoral Dissertations

Undesirable leakage from underground sedimentary formations is a matter of considerable concern due to implications for water resources contamination and greenhouse gas emissions. Leakage in underground formations can remain undetected for a long period. Pressure monitoring is a dynamic method that can be used for leakage detection and characterization. The pressure signals are affected by the hydraulic characteristics of the reservoir media and leakage pathways. Consequently, the pressure data can be interpreted to obtain information about the hydraulic characteristics of the system. Pressure interpretation is useful for early leakage detection, because the pressure signals travel fast in reservoir media. In …


Brominated Carbon Materials As Positive Electrodes For Nonaqueous Secondary Lithium-Bromine Batteries, Benjamin Beau Peterson Jun 2020

Brominated Carbon Materials As Positive Electrodes For Nonaqueous Secondary Lithium-Bromine Batteries, Benjamin Beau Peterson

LSU Doctoral Dissertations

Secondary lithium-bromine (Li-Br2) batteries have theoretical potentials near 4.1 V vs Li/Li+ and capacities more than 2 times greater than conventional Li-ion batteries. Herein, secondary, non-aqueous Li-Br2 half-cell batteries are reported using a Li metal anode, carbon-coated glass fiber separator, non-aqueous Li-based electrolytes with and without the addition of lithium bromine (LiBr) salt, and positive electrodes consisting of either chemically brominated non-graphitic carbon or carbon derived from the carbonization of metal-organic frameworks (MOFs) with LiBr embedded into the micro- and mesopores of the carbon matrix. The separator is effective in mitigating the transport of Br2 …


Metabolic Network Analysis Of Filamentous Cyanobacteria, Daniel Alexis Norena-Caro Jun 2020

Metabolic Network Analysis Of Filamentous Cyanobacteria, Daniel Alexis Norena-Caro

LSU Doctoral Dissertations

Cyanobacteria were the first organisms to use oxygenic photosynthesis, converting CO2 into useful organic chemicals. However, the chemical industry has historically relied on fossil raw materials to produce organic precursors, which has contributed to global warming. Thus, cyanobacteria have emerged as sustainable stakeholders for biotechnological production. The filamentous cyanobacterium Anabaena sp. UTEX 2576 can metabolize multiple sources of Nitrogen and was studied as a platform for biotechnological production of high-value chemicals (i.e., pigments, antioxidants, vitamins and secondary metabolites). From a Chemical engineering perspective, the biomass generation in this organism was thoroughly studied by interpreting the cell as a microbial …


Data-Driven Modeling And Prediction For Reservoir Characterization And Simulation Using Seismic And Petrophysical Data Analyses, Xu Zhou Jun 2020

Data-Driven Modeling And Prediction For Reservoir Characterization And Simulation Using Seismic And Petrophysical Data Analyses, Xu Zhou

LSU Doctoral Dissertations

This study explores the application of data-driven modeling and prediction in reservoir characterization and simulation using seismic and petrophysical data analyses. Different aspects of the application of data-driven modeling methods are studied, which include rock facies classification, seismic attribute analyses, petrophysical properties prediction, seismic facies segmentation, and reservoir dimension reduction.

The application of using petrophysical well logs to predict rock facies is explored using different data analytics methods including decision tree, random forest, support vector machine and neural network. Different models are trained from a set of well logs and pre-interpreted rock facies data. Among the compared methods, the random …