Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri Sep 2008

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri

Ganesh Balasubramanian

We simulate unsteady nanoscale thermal transport at a solid-fluidinterface by placing cooler liquid-vapor Ar mixtures adjacent to warmer Fe walls. The equilibration of the system towards a uniform overall temperature is investigated using nonequilibrium molecular dynamics simulations from which the heat flux is also determined explicitly. The Ar–Fe intermolecular interactions induce the migration of fluid atoms into quasicrystallineinterfacial layers adjacent to the walls, creating vacancies at the migration sites. This induces temperature discontinuities between the solidlikeinterfaces and their neighboring fluid molecules. The interfacial temperature difference and thus the heat flux decrease as the system equilibrates over time. The averaged interfacial …


The Dissipated Power In Atomic Force Microscopy Due To Interactions With A Capillary Fluid Layer, Nicole N. Hashemi, M.R. Paul, H. Dankowicz, W. Jhe Jan 2008

The Dissipated Power In Atomic Force Microscopy Due To Interactions With A Capillary Fluid Layer, Nicole N. Hashemi, M.R. Paul, H. Dankowicz, W. Jhe

Nastaran Hashemi

We study the power dissipated by the tip of an oscillating micron-scale cantilever as it interacts with a sample using a nonlinear model of the tip-surface force interactions that includes attractive, adhesive, repulsive, and capillary contributions. The force interactions of the model are entirely conservative and the dissipated power is due to the hysteretic nature of the interaction with the capillary fluid layer. Using numerical techniques tailored for nonlinear and discontinuous dynamical systems we compute the exact dissipated power over a range of experimentally relevant conditions. This is accomplished by computing precisely the fraction of oscillations that break the fluid …


Microstructure Evolution And Monomer Partitioning In Reversible Addition - Fragmentation Chain Transfer Microemulsion Polymerization, Jennifer M. O'Donnell, Eric W. Kaler Jan 2008

Microstructure Evolution And Monomer Partitioning In Reversible Addition - Fragmentation Chain Transfer Microemulsion Polymerization, Jennifer M. O'Donnell, Eric W. Kaler

Jennifer M. Heinen

Small-angle neutron scattering (SANS) studies of reversible addition - fragmentation chain transfer (RAFT) microemulsion polymerizations of butyl acrylate and 2-ethylhexyl acrylate with the RAFT agent methyl-2-(O-ethylxanthyl) propionate (MOEP) allow the observed rate retardation to be attributed to slow fragmentation of the macro-RAFT radical. Microemulsion polymerization allows the RAFT mechanism to be investigated in the absence of termination reactions so that the cause of the rate retardation frequently observed in both homogeneous and heterogeneous polymerizations may be isolated. However, the concentration of monomer at the locus of polymerization (Cmon(part)) must be known as a function of conversion before a mechanistic study …


Compensation Effect Of Benzene Hydrogenation On Pt(111) And Pt(100) Analyzed By The Selective Energy Transfer Model, Kaitlin M. Bratlie, Yimin Li, Ragnar Larsson, Gabor A. Somorjai Jan 2008

Compensation Effect Of Benzene Hydrogenation On Pt(111) And Pt(100) Analyzed By The Selective Energy Transfer Model, Kaitlin M. Bratlie, Yimin Li, Ragnar Larsson, Gabor A. Somorjai

Kaitlin M. Bratlie

Kinetic measurements at low temperatures (310-360 K) using gas chromatography (GC) for benzene hydrogenation on Pt(100) and Pt(111) single crystal surfaces have been carried out at Torr pressures. These kinetic measurements demonstrated a linear compensation effect for the production of cyclohexane. A detailed application of the model of selective energy transfer to the experimentally obtained results yields the vibrational frequency of the adsorbate leading to reaction. This frequency is attributed to ring distortion modes. The vibrational frequency of the heat bath, or catalyst, is ascribed to a Pt-H mode. An approximate heat of adsorption of the reacting molecule is also …


Determination Of The Escherichia Coli S-Nitrosoglutathione Response Network Using Integrated Biochemical And Systems Analysis, Laura R. Jarboe, Daniel R. Hyduke, Linh M. Tran, Katherine J.Y. Chou, James C. Liao Jan 2008

Determination Of The Escherichia Coli S-Nitrosoglutathione Response Network Using Integrated Biochemical And Systems Analysis, Laura R. Jarboe, Daniel R. Hyduke, Linh M. Tran, Katherine J.Y. Chou, James C. Liao

Laura R. Jarboe

During infection or denitrification, bacteria encounter reactive nitrogen species. Although the molecular targets of and defensive response against nitric oxide (NO) in Escherichia coli are well studied, the response elements specific to S-nitrosothiols are less clear. Previously, we employed an integrated systems biology approach to unravel the E. coli NO-response network. Here we use a similar approach to confirm that S-nitrosoglutathione (GSNO) primarily impacts the metabolic and regulatory programs of E. coli in minimal medium by reaction with homocysteine and cysteine and subsequent disruption of the methionine biosynthesis pathway. Targeting of homocysteine and cysteine results in altered regulatory activity of …


(Crcl3)3@2[C4mim][Ome]—Molecular Cluster-Type Chromium(Iii) Chloride Stabilized In A Salt Matrix, Bert Mallick, Harald Kierspel, Anja V. Mudring Jan 2008

(Crcl3)3@2[C4mim][Ome]—Molecular Cluster-Type Chromium(Iii) Chloride Stabilized In A Salt Matrix, Bert Mallick, Harald Kierspel, Anja V. Mudring

Anja V. Mudring

In [C4mim]2[CrCl3]3[OMe]2 molecular (CrCl3)3 units are embedded in a salt matrix of [C4mim][OMe]. This structural subunit can be viewed as a trapped molecular polymorph of CrCl3. Experimental and theoretical investigations indicate that, in contrast to bulk CrCl3, metal−metal bonds are formed at low temperatures.


A Reactive Oxide Overlayer On Rhodium Nanoparticles During Co Oxidation And Its Size Dependence Studied By In Situ Ambient-Pressure X-Ray Photoelectron Spectroscopy, Michael E. Grass, Hendrik Bluhm, Yawen Zhang, Derek Butcher, Jeong Y. Park, Yimin Li, Kaitlin M. Bratlie, Tianfu Zhang, Gabor A. Somorjai Jan 2008

A Reactive Oxide Overlayer On Rhodium Nanoparticles During Co Oxidation And Its Size Dependence Studied By In Situ Ambient-Pressure X-Ray Photoelectron Spectroscopy, Michael E. Grass, Hendrik Bluhm, Yawen Zhang, Derek Butcher, Jeong Y. Park, Yimin Li, Kaitlin M. Bratlie, Tianfu Zhang, Gabor A. Somorjai

Kaitlin M. Bratlie

The smaller, the better: In situ synchrotron ambient pressure X-ray photoelectron spectroscopy allows examination of the oxidation state of the surface of the rhodium nanoparticles (NPs) during CO oxidation in an O2 atmosphere. 2 nm NPs oxidize to a larger extent than 7 nm NPs during reaction at 150-200°C, which correlates with a fivefold increase in turnover frequency for the smaller nanoparticles.


Seven-Coordinate Ruthenium Atoms Sequestered In Praseodymium Clusters In The Chloride {Rupr3}Cl3, Nina Hermann, Anja V. Mudring, Gerd Meyer Jan 2008

Seven-Coordinate Ruthenium Atoms Sequestered In Praseodymium Clusters In The Chloride {Rupr3}Cl3, Nina Hermann, Anja V. Mudring, Gerd Meyer

Anja V. Mudring

The first example for an endohedral transition-metal atom (Ru) sequestered in a seven-coordinate surrounding of rare-earth metal atoms (Pr) has been found for {RuPr3}Cl3. The monocapped trigonal prisms of Pr atoms share two rectangular faces, forming a zigzag chain with Ru−Ru distances of 308 pm. Intracluster bonding is dominated by Ru−Pr bonding with very little Ru−Ru bonding.