Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

Energy

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 36

Full-Text Articles in Entire DC Network

Results Of The Study Of The Pumpkin Drying Process, Jasur Esirgapovich Safarov, Shahnoza Abduvakhitovna Sultanova, Andrey Svyatoslavovich Ponasenko, Gani Toshkhujaevich Dadaev Aug 2023

Results Of The Study Of The Pumpkin Drying Process, Jasur Esirgapovich Safarov, Shahnoza Abduvakhitovna Sultanova, Andrey Svyatoslavovich Ponasenko, Gani Toshkhujaevich Dadaev

Chemical Technology, Control and Management

The article presents the results of the study of the pumpkin drying process, comparisons with different drying models are carried out. A mathematical model for numerical analysis has been developed. Pumpkin drying rates are calculated and various drying models are investigated. 5 different drying models were used to verify the accuracy of experimental data and search for the most suitable model. The experimental data obtained for the drying air temperature of 45 °C, 55 °C and 65 °C were applied to various drying models.


Polymer Based Energy Storage And Thermal Management On Textile Devices, Wesley A. Viola Apr 2023

Polymer Based Energy Storage And Thermal Management On Textile Devices, Wesley A. Viola

Doctoral Dissertations

Humans developed textiles to manage thermal energy transfer with the environment and support homeostasis in a wide range of climates. With the anticipation of wearable technologies to transform healthcare via early, pre-symptomatic detection of illness, there is now a demand for electrical energy storage to support such on-body devices. Finding energy materials to merge seamlessly with textiles is basic requirement to ensure widespread adoption of wearable health monitors. Here we use a vapor deposition process to conformally coat ordinary fabrics with the doped conjugated polymer poly(3,4 ethylenedioxythiophene) (PEDOT-Cl), a soft material which possesses electronic and redox capabilities. We demonstrate PEDOT-Cl …


Rational Synthesis Of Ultra-Small And Durable Platinum-Based Catalysts For Renewable Energy Applications, Fahim Bin Abdur Rahman Apr 2022

Rational Synthesis Of Ultra-Small And Durable Platinum-Based Catalysts For Renewable Energy Applications, Fahim Bin Abdur Rahman

Theses and Dissertations

Ultrasmall supported platinum nanoparticles (Pt NPs) are often used in two promising renewable energy production technologies – hybrid-sulfur water splitting for actively catalyzing H2SO4 decomposition and in fuel cells for the oxygen reduction reaction (ORR). However, the stability of Pt NPs under reaction conditions is the ultimate challenge for these processes. Two prevalent ways to overcome this challenge are improving stability by anchoring Pt onto a secondary metal or doping heteroatoms into the support. This dissertation covers the rational design, synthesis, and stabilization of Pt-based catalysts in these two ways to achieve durable catalytic performance with desired activity and selectivity. …


Artificial Intelligence-Based Material Discovery For Clean Energy Future, Reza Maleki, Mohsen Asadnia, Amir Razmjou Jan 2022

Artificial Intelligence-Based Material Discovery For Clean Energy Future, Reza Maleki, Mohsen Asadnia, Amir Razmjou

Research outputs 2022 to 2026

Artificial intelligence (AI)-assisted materials design and discovery methods can come to the aid of global concerns for introducing new efficient materials in different applications. Also, a sustainable clean future requires a transition to a low-carbon economy that is material-intensive. AI-assisted methods advent as inexpensive and accelerated methods in the design of new materials for clean energies. Herein, the emerging research area of AI-assisted material discovery with a focus on developing clean energies is discussed. The applications, advantages, and challenges of using AI in material discovery are discussed and the future perspective of using AI in clean energy is studied. This …


Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun Jan 2022

Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun

Research outputs 2022 to 2026

In this paper, a clean process based on the steam-mediated reactions for simultaneous HCl and KCl production using the potassium (K)-containing phosphorous rock as a precursor is proposed. Through hydrochloric acid (HCl) leaching, not only the generation of H3PO4and CaCl2 (via further precipitation) were realized but also the acid-insoluble residue [phosphorous-rock slag (PS)] rich in elements, that is, K, Al, Si, and so on, in the form of microcline (KAlSi3O8) and quartz (SiO2) was obtained and became readily available for further HCl and KCl generation. Over 95 % of …


Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci Jan 2021

Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci

Williams Honors College, Honors Research Projects

Identifying materials to efficiently facilitate the oxygen evolution reaction (OER) is key to advancing water electrolysis, an essential technology in the pathway towards a sustainable energy future. Here, we explore cold-plasma treatment as a facile method to enhance the activity of NiP nanoparticles supported on activated carbon. NiP nanoparticles were synthesized on an activated carbon support using a solid-state method and were then treated with argon, oxygen, and hydrogen plasmas for extended times. In all cases, plasma treatment reduced the number of active sites on the support. OER activity was evaluated by testing the materials in alkaline conditions. The activities …


Clearance Of Solid Household Waste With The Reception Of Alternative Types Of Energy Carriers, Rakhmatullayev F, Turabdhanov S Nov 2020

Clearance Of Solid Household Waste With The Reception Of Alternative Types Of Energy Carriers, Rakhmatullayev F, Turabdhanov S

Technical science and innovation

The research is devoted to improving the technology of obtaining alternative types of energy carriers by applying methods of pyrolysis of unclaimed types of solid domestic wastes of biological origin, which also allow solving the tasks of improving the ecological situation in the places of formation. The practical value and relevance of this research lies in the development of advanced technology for obtaining alternative fuels. The proposed pyrolysis unit allows producing gaseous and liquid hydrocarbons in a continuous cycle. In the atmosphere of the gasifying agent (air, oxygen, water vapor, carbon dioxide or their mixture), the gasification process is primarily …


Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney Jul 2019

Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use a thermoelectric generator module to analyze the relationship between thermal and electrical energies. Using data collection sensors and analysis software, students will investigate the relationship between the temperature gradient across a thermoelectric generator module and the resulting electrical potential. Students will then use their data and analysis to solve problems relating to waste thermal energy in electrical systems and communicate their work to their peers and teacher.


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Evaluation And Analysis Of Ethane Transformation To Liquid Hydrocarbons Through Steam Cracking, Christian Omar Villa Santos, Wasiu Peter Oladipupo, Taufik Ridha, Rakesh Agrawal Aug 2018

Evaluation And Analysis Of Ethane Transformation To Liquid Hydrocarbons Through Steam Cracking, Christian Omar Villa Santos, Wasiu Peter Oladipupo, Taufik Ridha, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Process design and sensitivity studies for a steam cracking reactor was performed. Steam cracking is commonly employed to convert ethane to ethylene, a building block of many other products. Although this technology is generally employed at large scale (>6 Billion pounds of ethylene per year), understanding the process and its economic performance is critical to set target criteria for other processes under development. Aspen Plus was used to simulate the ethane steam cracking reactor and other process units. Sensitivity analysis was performed to determine the most efficient and cost-effective operation regarding product yield. The results show that the maximum …


Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy Aug 2018

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Dehydrogenation of alkanes is the first step in transforming light hydrocarbons into liquid fuels and chemicals. This process has traditionally used platinum alloys as catalysts. Alloys are used industrially because they have a greater selectivity than monometallic platinum. Alloying platinum with an inactive promoter modifies the crystalline structure of the surface (geometric effect), and the 5d electrons in platinum responsible for chemistry (electronic effect); both have been suggested to be primarily responsible for dehydrogenation selectivity in platinum alloys. Alloy catalysts have been synthesized using early 3d transition metal promoters with the same Pt3M crystal structure. X-Ray Absorption Spectroscopy …


Energy Potentials Of Briquette Produced From Tannery Solid Waste, Olatunde Ajani Oyelaran, Faralu Muhammed Sani, Olawale Monsur Sanusi, Olusegun Balogun, Adeyinka Okeowo Fagbemigun Dec 2017

Energy Potentials Of Briquette Produced From Tannery Solid Waste, Olatunde Ajani Oyelaran, Faralu Muhammed Sani, Olawale Monsur Sanusi, Olusegun Balogun, Adeyinka Okeowo Fagbemigun

Makara Journal of Technology

The vast quantity of waste generated from industries is one of the serious outcomes of unplanned development, resulting into quantum of hazardous organic and inorganic waste generating daily. Proper waste management is a challenging issue that must be addressed adequately. This is, therefore, carried out with a view of assessing the energy and combustion quality of tannery solid waste with a view of converting them into briquettes for cooking, heating and small home industries and reducing the menace caused by tannery waste disposal. The results of the experiments showed that the combustion rate ranged between 0.171 and 0.217 g/min, the …


Metabolic Comparison Of Wild-Type And Transgenic Synechocystis Pcc 6803 Cyanobacteria, Ian A. Mcluckey, John A. Morgan, Joel Yu King Hing Aug 2017

Metabolic Comparison Of Wild-Type And Transgenic Synechocystis Pcc 6803 Cyanobacteria, Ian A. Mcluckey, John A. Morgan, Joel Yu King Hing

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Calvin-Benson (CBB) cycle is an essential part of nature. This phenomenon allows carbon molecules in carbon dioxide from the atmosphere to be converted into useful energy in the form of sugars. Cyanobacteria are single-celled organisms capable of utilizing energy from sunlight to drive this cycle and are also readily engineered. In hopes of improving this cycle, we compared a wild-type version of the Synechocystis PCC6803 cyanobacteria to an engineered version overexpressing the enzyme FBA (fructose-biphosphate aldolase), called 70 glpX, to deduce how the overexpressing strain is able to be more photosynthetically efficient. To do this, comparative metabolomics were done …


A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle May 2017

A Bug’S Life: Integration Of Anaerobic Digestion And Bioelectrochemical Systems For Enhanced Energy Recovery From Wastewater Solids And Other Waste Substrates, Jeff Ryan Beegle

Masters Theses

Organic waste streams, like domestic wastewater and municipal solid waste, have the potential to be used as feedstocks for biotechnology processes to produce high value products and energy. This thesis investigated the technological, economical, and environmental potential for integrated anaerobic digestion (AD) and bioelectrochemical system (BES) platforms as they were theoretically and physically evaluated for energy recovery from domestic wastewater. The first chapter of this thesis compared the theoretical energy efficiencies of converting waste directly into electricity, using AD and BES alone and in various combinations. This chapter reviewed the experimentally demonstrated energy efficiencies reported in the literature with comparisons …


Towards A Cost-Effective Biorefinery : Production Of Activated Carbons From Residual Biomass For Energy Storage Devices., Zachary Dean Herde Apr 2017

Towards A Cost-Effective Biorefinery : Production Of Activated Carbons From Residual Biomass For Energy Storage Devices., Zachary Dean Herde

Electronic Theses and Dissertations

Biomass processing for industrial products and biofuels has gained an increasing presence as society looks to using sustainable resources for manufacturing and renewable fuels for energy. However, these sustainably produced materials and products cannot gain a competitive edge because of the manufacturing expenses that are a result of high process temperatures and pressures. In order to lower these costs, theoretical modeling has described a value-added co-product strategy as one of the best ways to combat high bioprocessing prices. Biomass has been shown to make effective carbons for energy storage devices such as supercapacitors and batteries. These carbons, with the right …


A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman Mar 2017

A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman

Nanoscience and Microsystems ETDs

Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed.

There has …


Go With The Flow –Thermoelectric Energy, Shawn Bell Jul 2016

Go With The Flow –Thermoelectric Energy, Shawn Bell

Middle School Lesson Plans

In this unit, students will learn how thermal energy be transferred and transformed. They will carry out investigations to gather evidence to support an explanation about direct conversion of heat into electrical energy. They will develop a model that shows the components of the system and changes in the system being investigated, and they will use evidence from the investigation to construct an explanation for how the energy flows.


Design, Scale-Up, Six Sigma In Processing Different Feedstocks In A Fixed Bed Downdraft Biomass Gasifier, Sai Chandra Teja Boravelli Jan 2016

Design, Scale-Up, Six Sigma In Processing Different Feedstocks In A Fixed Bed Downdraft Biomass Gasifier, Sai Chandra Teja Boravelli

Masters Theses

"This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure.

Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion …


Kesterite Thin-Film Solar Cell Absorbers Derived Using Inhomogeneous Czts Nanoparticles, Wei-Chang D. Yang Jan 2015

Kesterite Thin-Film Solar Cell Absorbers Derived Using Inhomogeneous Czts Nanoparticles, Wei-Chang D. Yang

Open Access Dissertations

My doctoral research focuses on understanding the structure-property-processing relationship of the kesterite materials to improve their device performance. It is recognized in both my own work and the recent literature that the structural and compositional integrities of CZTSSe are crucial to derive the solar cell grade kesterite thin-films. Analytical electron microscopy (AEM) allows me to demonstrate the structural and compositional inhomogeneity of the CZTS nanoparticles and CZTSSe thin-films at the nanoscale. For example, the observed forbidden reflections in TED patterns and FFT diffractograms corresponding to HRTEM images indicate that cation disorder leads to stacking faults in CZTS nanoparticles. Probe-corrected STEM …


Novel Nanostructured Materials For Solar Fuel Production And Advanced Rechargeable Batteries, Cunyu Zhao Dec 2014

Novel Nanostructured Materials For Solar Fuel Production And Advanced Rechargeable Batteries, Cunyu Zhao

Theses and Dissertations

Non-renewable fossil fuels are the major sources to meet the energy, electricity and transportation demands of today's world. The over consumption of fossil fuels will lead to the increasing energy crisis and disastrous effects such as air pollution, global warming etc.

The primary greenhouse gas is CO2 mainly emits from the combustion of fossil fuels. Photocatalytic reduction of CO2 using sunlight as the energy input is a promising way to reduce CO2 level in the atmosphere and in the meantime produce alternative fuels such as CO, methane, methanol, etc. Among the various photocatalyst materials reported, nanomaterial TiO2 is the most …


Tools For Efficient Design Of Multicomponent Separation Processes, Joshua Lee Huff Oct 2014

Tools For Efficient Design Of Multicomponent Separation Processes, Joshua Lee Huff

Open Access Dissertations

Separations account for as much as 85% of plant operating costs in chemical production; it is therefore important that they be designed with energy efficiency in mind. This can only be achieved if two things are achieved: the complete space of design options is known, and an accurate way is developed to compare all possible design options. For both membrane separation cascades and multicomponent distillation configurations, this dissertation explores methods for designing energy efficient separations.^ The operating cost of membranes used in production of nitrogen gas from air is largely driven by the compressors required to maintain a pressure differential. …


Greenscreen: Software To Improve Campus Water And Energy Use, Andrew T. Silva May 2014

Greenscreen: Software To Improve Campus Water And Energy Use, Andrew T. Silva

University Scholar Projects

Water and energy are intrinsically linked together. Energy is required to produce clean water and water is used heavily to generate energy. These two resources are constantly held in check, as they are vital to the sustained operation of towns, cities, and campuses. At the University of Connecticut (UConn), the consumption of water and energy is reduced by an efficient power plant and a brand new water reclamation facility. To reach beyond these accolades, it is essential that a deeper understanding of campus water usage is developed. Linking this knowledge with information about the energy consumption of UConn facilities will …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


A Dynamic Optimization Framework With Model Predictive Control Elements For Long Term Planning Of Capacity Investments In A District Energy System, Jose Luis Mojica Velazquez Dec 2013

A Dynamic Optimization Framework With Model Predictive Control Elements For Long Term Planning Of Capacity Investments In A District Energy System, Jose Luis Mojica Velazquez

Theses and Dissertations

The capacity expansion of a district heating system is studied with the objective of evaluating the investment decision timing and type of capacity expansion. District energy is an energy generation system that provides energy, such as heat and electricity, generated at central locations and distributed to the surrounding area. The study develops an optimization framework to find the optimal investment schedule over a 30 year horizon with the options of investing in traditional heating sources (boilers) or a next-generation combined heat and power (CHP) plant that can provide heat and electricity. In district energy systems, the investment decision on the …


Photolithography In Fabrication Of Thin-Film Solar Cells, Yusheng Zhu, Rakesh Agrawal Oct 2013

Photolithography In Fabrication Of Thin-Film Solar Cells, Yusheng Zhu, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solar energy has steadily increased its efficiency and cost-effectiveness throughout the past three decades and seems poised to compete with current primary energy (natural gas, oil, coal) as the need for alternative energy sources rises. One type of solar cell, thin-film cells, often relies on use of permanent photomasks in order to imprint a pattern onto the front metal contact. However, these machined metal masks are rigid and do not allow for different designs to be explored as current masks encounter difficulties in machining grids thin enough for optimization. Photolithography, traditionally used in the microfabrication field, provides a method in …


Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse Jan 2013

Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse

Masters Theses 1911 - February 2014

In flows with stable density stratification, a portion of the gravitational potential energy is available for conversion to kinetic energy. The remainder is not and is called “background potential energy”. The partition of potential energy is analogous to the classical division of energy due to motion into its kinetic and internal components. Computing background and available potential energies is important for understanding stratified flows. In many numerical simulations, though, the Boussinesq approximations to the Navier-Stokes equations are employed. These approximations are not consistent with conservation of energy. In this thesis we re-derive the governing equations for a buoyancy driven fluid …


Biogas As A Sustainable Alternative For Current Energy Need Of India., Gauri P. Minde, Sandip S. Magdum, Kalyanraman V. Jan 2013

Biogas As A Sustainable Alternative For Current Energy Need Of India., Gauri P. Minde, Sandip S. Magdum, Kalyanraman V.

Sandip S. Magdum

Per capita energy consumption of India is declining with increasing its population, which has direct impact on national economy. Biogas technology seems promising to attain sustainable energy yields without damaging the environment. Waste management, manure creation, health care and employment foundation are the benefits of biogas system. Use of biogas assures renewable energy supply and balance of green house gases. India is traditionally using biogas since long time but there is need to improve the technology, applications and deployment strategies. Bioenergy centralization in urban and decentralization in rural can help government to minimize both the import of fuel derivatives and …


Catalytic Tri-Reforming Of Biomass-Derived Syngas To Produce Desired H2:Co Ratios For Fuel Applications, Devin Mason Walker Jan 2012

Catalytic Tri-Reforming Of Biomass-Derived Syngas To Produce Desired H2:Co Ratios For Fuel Applications, Devin Mason Walker

USF Tampa Graduate Theses and Dissertations

This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass via a tri-reforming process which involves a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of methane. Typical biomass-derived syngas H2:CO is 1:1 and contains tars that deactivate FT catalyst. This innovation allows for cost-effective one-step production of syngas in the required H2:CO of 2:1 with reduction of tars for use in the FTS. To maximize the performance of the tri-reforming catalyst, an attempt to control oxygen mobility, thermal stability, dispersion of metal, …


Study On The Use Of Mgal Hydrotalcites As Solid Heterogeneous Catalysts For Biodiesel Production, João F. Gomes Dec 2011

Study On The Use Of Mgal Hydrotalcites As Solid Heterogeneous Catalysts For Biodiesel Production, João F. Gomes

João F Gomes

This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 ºC and 700 ºC, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1 % Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2 % FAME in the 2nd reaction step and 34 % FAME in the 3rd reaction …


Notice On A Case Study On The Utilization Of Wind Energy Potential On A Remote And Isolated Small Wastewater Treatment Plant, João F. Gomes Aug 2011

Notice On A Case Study On The Utilization Of Wind Energy Potential On A Remote And Isolated Small Wastewater Treatment Plant, João F. Gomes

João F Gomes

Small wastewater treatment plants (WWTP) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. Some of them are located near the seaside, in environmental sensible zones, and due to tourism activity of these sites, seasonal effects related with population size fluctuation can occur, which can originate certain inefficiencies concerning WWTP design and energy supply. The objective of this paper is to describe a step by step procedure for evaluation of the wind potential of sites that are dependent of in-situ energy generation, as well as, a case study on the utilization …