Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Experimental And Numerical Investigation Of Heat Transfer In Cnt Nanofluids May 2015

Experimental And Numerical Investigation Of Heat Transfer In Cnt Nanofluids

Faculty of Engineering University of Malaya

Nanofluids with their enhanced thermal conductivity are believed to be a promising coolant in heat transfer applications. In this study, carbon nanotube (CNT) nanofluids of 0.01wt%, stabilised by 1.0wt% gum arabic were used as a cooling liquid in a concentric tube laminar flow heat exchanger. The flow rate of cold fluid varied from 10 to 50g/s. Both experimental and numerical simulations were carried out to determine the heat transfer enhancement using CNT nanofluids. Computational fluid dynamics (CFD) simulations were carried out using Fluent v 6.3 by assuming single-phase approximation. Thermal conductivity, density and rheology of the nanofluid were also measured …


Functional Carbons And Carbon Nanohybrids For The Catalytic Conversion Of Biomass To Renewable Chemicals In The Condensed Phase, John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier Jan 2014

Functional Carbons And Carbon Nanohybrids For The Catalytic Conversion Of Biomass To Renewable Chemicals In The Condensed Phase, John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier

Jean-Philippe Tessonnier

The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300 °C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Mox/Cnts Hetero-Structures For Gas Sensing Applications: Role Of Cnts Defects, G. Neri, S. G. Leonardi, N. Donato, C. Marichy, Jean-Philippe Tessonnier, M.-G. Willinger, Kyeong-Hwan Lee, N. Pinna Jan 2012

Mox/Cnts Hetero-Structures For Gas Sensing Applications: Role Of Cnts Defects, G. Neri, S. G. Leonardi, N. Donato, C. Marichy, Jean-Philippe Tessonnier, M.-G. Willinger, Kyeong-Hwan Lee, N. Pinna

Jean-Philippe Tessonnier

The preparation, characterization and sensing properties of CNT composites with a thin metal oxide (MOx) surface layer is presented. Atomic layer deposition (ALD) was applied for the coating of the inner and outer CNTs walls with thin films of ZnO and SnO2 of precisely controlled thicknesses. Differently treated CNTs with different degree of surface functionalization were used as support for the oxide films. The sensing properties of the obtained composite materials towards NO2 were investigated and related to the morphological and microstructural characteristics of both the coating and support. SnO2-based composites on CNTs treated at 700 °C show enhanced performance …


Chemically Modified Multi-Walled Carbon Nanotubes (Mwcnts) With Anchored Acidic Groups, Nuruzatulifah Bt Asari Mansor, Jean-Philippe Tessonnier, Ali Rinaldi, Sylvia Reiche, M. G. Kutty Jan 2012

Chemically Modified Multi-Walled Carbon Nanotubes (Mwcnts) With Anchored Acidic Groups, Nuruzatulifah Bt Asari Mansor, Jean-Philippe Tessonnier, Ali Rinaldi, Sylvia Reiche, M. G. Kutty

Jean-Philippe Tessonnier

Surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out using a gas phase treatment in a Universal Temperature Program (UTP) reactor by flowing SO 3 gas onto the CNTs while being heated at different temperatures. The functionalized nanotubes were characterized using X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy. The amount of oxyen and sulfur containing groups was determined by acid-base titration. The titration results were in good agreement with elemental analysis using X-ray fluorescence. FTIR analysis showed the presence of oxygen and sulfur containing groups, S=O, C-S, C=O and-COOH. Raman spectroscopy confirmed that oxygen and …