Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

Doctoral Dissertations

Conductivity

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

The Significance Of Grouping And Missed Bubbles On Interfacial Area Concentration And Void Fraction, Chandller Stephen-Leslie Mills Jan 2018

The Significance Of Grouping And Missed Bubbles On Interfacial Area Concentration And Void Fraction, Chandller Stephen-Leslie Mills

Doctoral Dissertations

"The two-fluid model is used in nuclear reactor safety codes. Two of the important constitutive relations will be discussed in this study, the interfacial area concentration and void fraction. The Interfacial area concentration is directly affected by the number of bubbles and how these bubbles are categorized into groups. In this study, a new algorithm was implemented to account for trailing bubbles, bubbles with short response times, and the categorization of bubbles based upon diameter for all group 1 bubbles. The optical and conductivity probes were used to determine the void fraction and interfacial area concentration in a bubble column. …


A Study Of Diblock Copolymer/Charged Particle Nanoporous Membranes; Morphology, Design And Transport Property Modeling, Bo Zhang Aug 2015

A Study Of Diblock Copolymer/Charged Particle Nanoporous Membranes; Morphology, Design And Transport Property Modeling, Bo Zhang

Doctoral Dissertations

A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a neutral or charged nanoparticle attached either between the two blocks or at the end of copolymer. Particle size was varied between one and four tenths of the radius of gyration of the copolymer. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the molecular-level self-assembly processes with the aim of determining the appropriate morphologies used as nanoporous membranes, (i.e. the periodic, hexagonal arrays of cylinders wherein the particles would primarily be …


Modeling Chemical Degradation And Proton Transport In Perfluorosulfonic Acid Ionomers, Milan Kumar Dec 2011

Modeling Chemical Degradation And Proton Transport In Perfluorosulfonic Acid Ionomers, Milan Kumar

Doctoral Dissertations

The ionomer-membrane interface in a membrane electrode assembly connects the catalyst and membrane and allows hydrated protons to move between the catalyst and membrane. The continuous operation of the polymer membrane electrolyte fuel cell at high temperature and/or in frequent freeze/thaw cycles leads to membrane degradation and delamination of the interface, which lower the proton conductivity. In this dissertation, we modeled the chemical degradation and proton conductivity of perfluorosulfonic acid (PFSA) ionomers by ab initio calculations and macroscopic modeling. All ab initio calculations were performed using Gaussian 03 suites of program by employing B3LYP/6-311++G** method/basis set. The macroscopic modeling involves …


Computational Studies Of Ion Transport In Polymer Electrolytes, Hui Wu Oct 2011

Computational Studies Of Ion Transport In Polymer Electrolytes, Hui Wu

Doctoral Dissertations

Improving ionic conductivity and lithium mobility in polymer electrolytes is important for their practical use for battery electrolytes. In this study, a combination of molecular dynamics and Monte Carlo simulations was used to bring insight into lithium ion transport in poly(ethylene oxide) (PEO) with plasticizers and also next to alumina solid surface doped with lithium salt. The simulations were performed using a moderately high molecular weight polymer (Mn = 10,000 g/mol) at an EO:Li ratio of 15. For the plasticized system, the PEO with LiN(CF3SO 2)2 (LiTFSI) was mixed with 10 wt% plasticizers that included either cyclic ethylene carbonate …