Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

The Roles Of Nitric Oxide Synthases (Nos) In Endochondral Bone Formation, Qian Yan Sep 2010

The Roles Of Nitric Oxide Synthases (Nos) In Endochondral Bone Formation, Qian Yan

Electronic Thesis and Dissertation Repository

Longitudinal growth of endochondral bones is controlled by the cartilage growth plate. Chondrocyte proliferation and hypertrophy, vascular invasion, formation of ossification centers and cartilage replacement by bone tissue are all important processes required for normal growth. These biological processes have to be tightly regulated or disturbances will lead to skeletal diseases. A large number of genes, growth factors and hormones have been implicated in the regulation of growth plate biology, however, less is known about the intracellular signaling pathways involved. Nitric oxide (NO) has been identified as a regulator of cellular proliferation, differentiation, migration, survival and metabolism in multiple cell …


Regulation Of Dna Damage Processing By Covalent Modification Of Thymine Dna Glycosylase, Ryan D. Mohan May 2010

Regulation Of Dna Damage Processing By Covalent Modification Of Thymine Dna Glycosylase, Ryan D. Mohan

Electronic Thesis and Dissertation Repository

Thymine DNA glycosylase (TDG) is an essential DNA repair enzyme mediating excision of uracil and thymine mispaired with guanine within CpG contexts. Unrepaired, these lesions result in G:C to A:T transitions which are major contributors to genome instability. Interestingly, TDG interacts functionally with transcriptional regulators and participates in directed cytosine demethylation at promoters. TDG is subject to multiple post-translational modifications (PTM) and we undertook an analysis of how these regulate TDG function. Initially, we examined TDG regulation by small ubiquitin-like modifier (SUMO) and identified a novel SUMO binding motif (SBM1, residues 144-148). We hypothesized that SBM1, along with SBM2 (319-322), …