Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Yeast Dynamin And Ypt6 Converge On The Garp For Endosome-To-Golgi Trafficking, Pelin Makaraci Dec 2017

Yeast Dynamin And Ypt6 Converge On The Garp For Endosome-To-Golgi Trafficking, Pelin Makaraci

MSU Graduate Theses

Protein recycling is an important cellular process required for cell homeostasis. Results from prior studies demonstrated that Vps1, a dynamin homologue in yeast, is implicated in protein recycling from the endosome to the trans-Golgi Network (TGN). However, the function of Vps1 in relation to Ypt6, a master GTPase in the recycling pathway, remains unknown. The present study reveals that Vps1 physically interacts with Ypt6 if at least one of them is full-length. It was found that overexpression of full-length Vps1, but not GTP hydrolysis-defective Vps1 mutants, is sufficient to rescue abnormal phenotypes in membrane trafficking pathways provoked by loss …


The Effect Of Hemodynamic Force On The Maturation Of Blood Vessels During Embryogenesis, Rachel Lee Padget Aug 2017

The Effect Of Hemodynamic Force On The Maturation Of Blood Vessels During Embryogenesis, Rachel Lee Padget

MSU Graduate Theses

Throughout embryonic development, blood vessels are derived from endothelial cells by way of vasculogenesis. During angiogenesis, vessels remodel to form a hierarchy of large-diameter arteries that branch into small-diameter capillaries. In this maturation, vessels respond to unidentified signaling events to become surrounded with an outer layer of vascular smooth muscle cells (vSMCs). This results in arteries that have a thick vSMC layer, veins that have a thin vSMC layer, and capillaries that have a very thin or absent vSMC layer. What remains to be determined is the cause of the thicker layer of vSMCs around proximal arteries. Previous studies …


The Role Of Hemodynamic Force On Development Of The Mouse Embryonic Heart, Samantha Jean Fredrickson Aug 2017

The Role Of Hemodynamic Force On Development Of The Mouse Embryonic Heart, Samantha Jean Fredrickson

MSU Graduate Theses

The most common type of birth defects are congenital heart defects (or CHDs). Though a few cases of CHDs have been attributed to genetic defects specific to the heart, substance exposure, or to maternal disease, the cause of most CHDs is unknown. Thus, further research is needed to determine how CHDs form. Very few studies have investigated how physiological factors like perturbations of blood flow can affect normal heart development. For instance, increasing or decreasing the resistance to blood flow can alter development of the heart in both zebrafish and chicken embryos. This could be one mechanism to explain CHD …