Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Function Of Atm And Msh2 During Dna Repair And Recombination, Emily Sible Sep 2022

Function Of Atm And Msh2 During Dna Repair And Recombination, Emily Sible

Dissertations, Theses, and Capstone Projects

Class switch recombination (CSR) produces secondary immunoglobulin isotypes and requires AID-dependent DNA deamination of intronic switch (S) regions within the immunoglobulin heavy chain (Igh) gene locus. Non-canonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal S regions. ATM-dependent phosphorylation of AID at serine-38 (pS38-AID) promotes its interaction with APE1, a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice …


Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik Sep 2022

Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik

Dissertations, Theses, and Capstone Projects

Clustered protocadherins (Pcdhs) are a family of 60 adhesion-like molecules forming a neural barcode. In vertebrate neurons, 60 Pcdhs are coded by a large gene cluster. Numerous axons in the cluster are coding for the different extracellular, transmembrane, variable portion of the cytoplasmic and constant cytoplasmic domains where their expression is controlled epigenetically. These proteins mediate interactions between axons, dendrites, and glial cells during neural development. Yet, Pcdhs are not strictly adhesion molecules. In the amacrine cells of the retina, Pcdhs promote avoidance of the same cell dendrites, where in the cortex Pcdhs promote interactions between dendrites and astrocytes. In …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Gamma Protocadherin Synaptic Localization And Intracellular Trafficking Is Consistent With Distinct Adhesive And Anti-Adhesive Roles In Development, Nicole Lamassa Sep 2022

Gamma Protocadherin Synaptic Localization And Intracellular Trafficking Is Consistent With Distinct Adhesive And Anti-Adhesive Roles In Development, Nicole Lamassa

Dissertations, Theses, and Capstone Projects

Clustered protocadherins (Pcdhs) constitute a family of cell adhesion molecules with approximately 60 Pcdh genes clustered in a 1 MB locus on chromosome 5q31 in humans. The Pcdh gene cluster is subdivided into α, β, and γ subclusters which encode related proteins. Individual neurons activate different subsets of Pcdh-α, Pcdh-β and Pcdh-γ genes by epigenetic mechanisms to generate distinct Pcdh adhesive units expressed by each neuron. This is thought to serve as a “surface barcode” for single-cell identity and synaptic recognition in the nervous system. The actual role for Pcdhs in neural development is still relatively unknown and different roles …


Nup211 Plays An Important Role In Regulating Mrna Export And Stress Response, Ayana Ikenouchi Aug 2022

Nup211 Plays An Important Role In Regulating Mrna Export And Stress Response, Ayana Ikenouchi

Theses and Dissertations

Nup211 is a nuclear pore basket component in Schizosaccharomyces pombe and roles in the gating functions of NPCs. Using RT-qPCR, I found that in nup211-shutoff cells, the transcript levels of genes in mRNA export and stress-response pathways were significantly changed, suggesting nup211 is involved in regulating stress response pathways.


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …