Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


The Signaling Pathways Of Metallothionein-Mediated Chemotaxis In Breast Cancer, Jennifer Messina May 2019

The Signaling Pathways Of Metallothionein-Mediated Chemotaxis In Breast Cancer, Jennifer Messina

University Scholar Projects

Metallothionein (MT) is a small, thiol rich protein released into the extracellular environment in response to stress. Elevated expression of MT has been linked to many inflammatory diseases including inflammatory bowel diseases, diabetes, and cancer. In breast cancer, high expression of MT has been associated with poor patient prognosis. Previous studies have shown that MT acts as a chemoattractant in lymphocytes, and that UC1MT, a monoclonal anti-MT antibody, can block this chemotactic response. In addition, it has been shown that both Cholera toxin and Pertussis toxin, which are known antagonists of G-protein coupled receptors, can inhibit MT-mediated chemotaxis. Here, I …