Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

PDF

Selected Works

Carbon nanotubes

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Functional Carbons And Carbon Nanohybrids For The Catalytic Conversion Of Biomass To Renewable Chemicals In The Condensed Phase, John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier Jan 2014

Functional Carbons And Carbon Nanohybrids For The Catalytic Conversion Of Biomass To Renewable Chemicals In The Condensed Phase, John Matthiesen, Thomas Hoff, Chi Liu, Charles Pueschel, Radhika Rao, Jean-Philippe Tessonnier

Jean-Philippe Tessonnier

The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300 °C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.


Chemically Modified Multi-Walled Carbon Nanotubes (Mwcnts) With Anchored Acidic Groups, Nuruzatulifah Bt Asari Mansor, Jean-Philippe Tessonnier, Ali Rinaldi, Sylvia Reiche, M. G. Kutty Jan 2012

Chemically Modified Multi-Walled Carbon Nanotubes (Mwcnts) With Anchored Acidic Groups, Nuruzatulifah Bt Asari Mansor, Jean-Philippe Tessonnier, Ali Rinaldi, Sylvia Reiche, M. G. Kutty

Jean-Philippe Tessonnier

Surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out using a gas phase treatment in a Universal Temperature Program (UTP) reactor by flowing SO 3 gas onto the CNTs while being heated at different temperatures. The functionalized nanotubes were characterized using X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy. The amount of oxyen and sulfur containing groups was determined by acid-base titration. The titration results were in good agreement with elemental analysis using X-ray fluorescence. FTIR analysis showed the presence of oxygen and sulfur containing groups, S=O, C-S, C=O and-COOH. Raman spectroscopy confirmed that oxygen and …