Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Potential Bioavailability Of Representative Pyrogenic Organic Matter Compounds In Comparison To Natural Dissolved Organic Matter Pools, Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, Allison N. Myers-Pigg Apr 2023

Potential Bioavailability Of Representative Pyrogenic Organic Matter Compounds In Comparison To Natural Dissolved Organic Matter Pools, Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, Allison N. Myers-Pigg

Biological Systems Engineering: Papers and Publications

Pyrogenic organic matter (PyOM) from wildfires impacts river corridors globally and is widely regarded as resistant to biological degradation. Though recent work suggests PyOM may be more bioavailable than historically perceived, estimating bioavailability across its chemical spectrum remains elusive. To address this knowledge gap, we assessed potential bioavailability of representative PyOM compounds relative to ubiquitous dissolved organic matter (DOM) with a substrate-explicit model. The range of potential bioavailability of PyOM was greater than natural DOM; however, the predicted thermodynamics, metabolic rates, and carbon use efficiencies (CUEs) overlapped significantly between all OM pools. Compound type (e.g., natural versus PyOM) had approximately …


Uavs For Vegetation Monitoring: Overview And Recent Scientific Contributions, Ana I. De Castro, Yeyin Shi, Joe Mari Maja, Jose M. Peña May 2021

Uavs For Vegetation Monitoring: Overview And Recent Scientific Contributions, Ana I. De Castro, Yeyin Shi, Joe Mari Maja, Jose M. Peña

Biological Systems Engineering: Papers and Publications

This paper reviewed a set of twenty-one original and innovative papers included in a special issue on UAVs for vegetation monitoring, which proposed new methods and techniques applied to diverse agricultural and forestry scenarios. Three general categories were considered: (1) sensors and vegetation indices used, (2) technological goals pursued, and (3) agroforestry applications. Some investigations focused on issues related to UAV flight operations, spatial resolution requirements, and computation and data analytics, while others studied the ability of UAVs for characterizing relevant vegetation features (mainly canopy cover and crop height) or for detecting different plant/crop stressors, such as nutrient content/deficiencies, water …


A Decade Of Unmanned Aerial Systems In Irrigated Agriculture In The Western U.S., Jose L. Chavez, Alfonso F. Torres-Rua, Wayne E. Woldt, Huihui Zhang, Christopher Robertson, Gary W. Marek, Dong Wang, Derek M. Heeren, Saleh Taghvaeian, Christopher M. U. Neale Jan 2020

A Decade Of Unmanned Aerial Systems In Irrigated Agriculture In The Western U.S., Jose L. Chavez, Alfonso F. Torres-Rua, Wayne E. Woldt, Huihui Zhang, Christopher Robertson, Gary W. Marek, Dong Wang, Derek M. Heeren, Saleh Taghvaeian, Christopher M. U. Neale

Biological Systems Engineering: Papers and Publications

Several research institutes, laboratories, academic programs, and service companies around the United States have been developing programs to utilize small unmanned aerial systems (sUAS) as an instrument to improve the efficiency of in-field water and agronomical management. This article describes a decade of efforts on research and development efforts focused on UAS technologies and methodologies developed for irrigation management, including the evolution of aircraft and sensors in contrast to data from satellites. Federal Aviation Administration (FAA) regulations for UAS operation in agriculture have been synthesized along with proposed modifications to enhance UAS contributions to irrigated agriculture. Although it is feasible …


Greenhouse Gas Emissions From Beef Feedlot Surface Materials As Affected By Diet, Moisture, Temperature, And Time, Bryan L. Woodbury, John E. Gilley, David B. Parker, Bobbi S. Stomer Jan 2018

Greenhouse Gas Emissions From Beef Feedlot Surface Materials As Affected By Diet, Moisture, Temperature, And Time, Bryan L. Woodbury, John E. Gilley, David B. Parker, Bobbi S. Stomer

Biological Systems Engineering: Papers and Publications

A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open-lot pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distillers grains with solubles (WDGS) or a DRC diet containing 35% WDGS. The FSM were collected, air-dried or mixed with 3.0 L of water to represent dry or wet conditions, and then incubated at temperatures of 5°C, 15°C, 25°C, or 35°C. Static flux chambers were used to quantify GHG emissions over a 14-day period. …


Critical Factors Affecting The Integration Of Biomass Gasification And Syngas Fermentation Technology, Karthikeyan D. Ramachandriya, Dimple K. Kundiyana, Ashokkumar M. Sharma, Ajay Kumar, Hasan K. Atiyeh, Raymond L. Huhnke, Mark R. Wilkins Jan 2016

Critical Factors Affecting The Integration Of Biomass Gasification And Syngas Fermentation Technology, Karthikeyan D. Ramachandriya, Dimple K. Kundiyana, Ashokkumar M. Sharma, Ajay Kumar, Hasan K. Atiyeh, Raymond L. Huhnke, Mark R. Wilkins

Biological Systems Engineering: Papers and Publications

Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, …