Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

Extracellular matrix

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 39

Full-Text Articles in Entire DC Network

Perfusability And Immunogenicity Of Implantable Pre-Vascularized Tissues Recapitulating Features Of Native Capillary Network, Dhavan Sharma, Archita Sharma, Linghao Hu, Te An Chen, Sarah Voon, Kayla J. Bayless, Jeremy Goldman, Alex J. Walsh, Feng Zhao Dec 2023

Perfusability And Immunogenicity Of Implantable Pre-Vascularized Tissues Recapitulating Features Of Native Capillary Network, Dhavan Sharma, Archita Sharma, Linghao Hu, Te An Chen, Sarah Voon, Kayla J. Bayless, Jeremy Goldman, Alex J. Walsh, Feng Zhao

Michigan Tech Publications, Part 2

Vascularization is a key pre-requisite to engineered anatomical scale three dimensional (3-D) constructs to ensure their nutrient and oxygen supply upon implantation. Presently, engineered pre-vascularized 3-D tissues are limited to only micro-scale hydrogels, which meet neither the anatomical scale needs nor the complexity of natural extracellular matrix (ECM) environments. Anatomical scale perfusable constructs are critically needed for translational applications. To overcome this challenge, we previously developed pre-vascularized ECM sheets with long and oriented dense microvascular networks. The present study further evaluated the patency, perfusability and innate immune response toward these pre-vascularized constructs. Macrophage-co-cultured pre-vascularized constructs were evaluated in vitro to …


Fibroblast-Generated Extracellular Matrix Guides Anastomosis During Wound Healing In An Engineered Lymphatic Skin Flap, Alvis Chiu, Wenkai Jia, Yumeng Sun, Jeremy Goldman, Feng Zhao Feb 2023

Fibroblast-Generated Extracellular Matrix Guides Anastomosis During Wound Healing In An Engineered Lymphatic Skin Flap, Alvis Chiu, Wenkai Jia, Yumeng Sun, Jeremy Goldman, Feng Zhao

Michigan Tech Publications

A healthy lymphatic system is required to return excess interstitial fluid back to the venous circulation. However, up to 49% of breast cancer survivors eventually develop breast cancer-related lymphedema due to lymphatic injuries from lymph node dissections or biopsies performed to treat cancer. While early-stage lymphedema can be ameliorated by manual lymph drainage, no cure exists for late-stage lymphedema when lymph vessels become completely dysfunctional. A viable late-stage treatment is the autotransplantation of functional lymphatic vessels. Here we report on a novel engineered lymphatic flap that may eventually replace the skin flaps used in vascularized lymph vessel transfers. The engineered …


The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling Jan 2023

The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling

Theses and Dissertations

Treatments for acute respiratory distress syndrome (ARDS) are still unavailable and the prevalence of the disease has only increased due to the Covid-19 pandemic. Mechanical ventilation regiments are still utilized to support declining lung function, but they also contribute to lung damage and increase the risk of bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSC secretome and the extracellular matrix (ECM) into a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta-potential, and mass spectrometry …


Development Of Brain-Derived Bioscaffolds For Neural Progenitor Cell Culture And Delivery, Julia Terek Jun 2022

Development Of Brain-Derived Bioscaffolds For Neural Progenitor Cell Culture And Delivery, Julia Terek

Electronic Thesis and Dissertation Repository

The use of brain extracellular matrix (ECM) as a biomaterial has the potential to promote neural tissue regeneration by providing cell-instructive cues that direct survival, proliferation, and differentiation. This study developed a novel detergent-free decellularization protocol that effectively reduced cellular content while preserving key ECM components in porcine and rat brains. The resulting decellularized brain tissue (DBT) was incorporated into microcarriers to assess its effects on the growth, phenotype and neurotrophic factor gene expression of rat brain-derived progenitor cells cultured within spinner flask bioreactors, using purified collagen microcarriers as a control. Both types of microcarriers supported cell expansion and survival, …


Porcine Neonatal Heart Extracellular Matrix As A Regeneration Platform, Karla Perez Aug 2021

Porcine Neonatal Heart Extracellular Matrix As A Regeneration Platform, Karla Perez

Bioengineering Dissertations

Each year, an estimated 620,000 Americans have new heart attack and suffer from myocardial infarction (MI) that results in massive heart cell death and decrease in heart function. Various therapeutic strategies, such as pharmacological treatments and reperfusion strategies, have greatly improved short-term MI survival. However, these strategies do not restore normal cardiac function due to the permanent loss of cardiomyocytes. As a promising strategy, cardiac cell therapy delivers repairing cells to damaged areas (scar tissues) to revitalize the infracted heart. However, a key challenge in cardiac cell therapy, i.e. the extremely low survival and engraftment rate of transplanted cells, must …


Extracellular Matrix-Derived Microcarriers As 3-D Cell Culture Platforms, Anna Kornmuller Apr 2021

Extracellular Matrix-Derived Microcarriers As 3-D Cell Culture Platforms, Anna Kornmuller

Electronic Thesis and Dissertation Repository

Recognizing the cell-instructive capacity of tissue-specific extracellular matrix (ECM) to direct cell attachment, proliferation and differentiation, there is a need for the development of in vitro cell culture models that reflect the complexity of the ECM to improve stem/progenitor cell expansion and lineage-commitment. This thesis focused on the development and characterization of ECM-derived microcarriers for the in vitro dynamic culture and expansion of stromal cells for cell therapy and tissue engineering applications.

To develop novel platforms for use in dynamic culture systems, initial work focused on applying electrospraying techniques to fabricate microcarriers from decellularized dermal tissue (DDT) and decellularized myocardial …


Optimizing New In Vitro Methodologies For Assessing The Effects Of Mechanical Stimuli On Lung Cells: Implications For Lung Biology And Disease, Alicia E. Tanneberger Jan 2021

Optimizing New In Vitro Methodologies For Assessing The Effects Of Mechanical Stimuli On Lung Cells: Implications For Lung Biology And Disease, Alicia E. Tanneberger

Graduate College Dissertations and Theses

Chronic lung diseases affect millions of people in the United States and are a leading cause of both morbidity and mortality. Studying how environmental factors affect lung cell biology and function is being increasingly recognized as a critical step in understanding lung disease pathogenesis and the development of new therapeutic approaches that combat lung diseases. These factors include lung extracellular matrix (ECM) composition and the mechanobiological factors of stiffness and cyclic mechanical strain, which during breathing, act on cells during the normal expansion and contraction of the lung. However, current methodologies for studying these factors have significant limitations and new …


Characterizing The Biophysical Properties And Origin Of Extracellular Matrix In The Breast Tumor Microenvironment, Connor T. King Oct 2020

Characterizing The Biophysical Properties And Origin Of Extracellular Matrix In The Breast Tumor Microenvironment, Connor T. King

LSU Master's Theses

Tumors derived from breast tissue possess the ability to manipulate and permanently alter their surrounding tissue. Studies demonstrate that tissues surrounding breast tumors have differences in secreted factors as well as extracellular matrix (ECM) deposition and structure. However, some fundamental gaps exist within this paradigm: specifically, what exacerbates this transformation and are these changes maintained between the subtypes of breast tumors? Therefore, a targeted evaluation of the effects of the tumor on the stromal microenvironment in a subtype specific manner will be invaluable. To determine if tumor aggressiveness and subtype differentially regulate the tumor microenvironment, a model must be constructed …


The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology and immunohistochemistry. …


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Graduate Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent degradation …


A High-Throughput Screening Platform For In Vitro Elastic Fiber Production And The Mass Transport Properties Of The Elastic Fiber Compromised Arterial Wall, Austin John Cocciolone May 2019

A High-Throughput Screening Platform For In Vitro Elastic Fiber Production And The Mass Transport Properties Of The Elastic Fiber Compromised Arterial Wall, Austin John Cocciolone

McKelvey School of Engineering Theses & Dissertations

Elastin comprises nearly 50% of the wall in large elastic arteries and has a broad variety of physiological roles. As a structural extracellular matrix protein, elastin is responsible for the reversible elasticity in large arties that dampens pulsatile flow and ultimately reduces the workload on the heart. Structural compromise to the elastic fiber network is apparent in the elastin genetic disorders, supravalvular aortic stenosis and autosomal dominant cutis laxa-1, and acquired elastin disorders including hypertension, atherosclerosis, artery calcification, aneurysms, diabetes, and obesity. All of these disorders lead to an increased incidence of cardiovascular related death and the compromised elastic fiber …


Design Of Tissue-Specific Cellular Microenvironments For Adipose-Derived Stromal Cell Culture And Delivery, Arthi Shridhar Apr 2019

Design Of Tissue-Specific Cellular Microenvironments For Adipose-Derived Stromal Cell Culture And Delivery, Arthi Shridhar

Electronic Thesis and Dissertation Repository

The development of in vitro cell culture models that investigate tissue-specific effects of the extracellular matrix (ECM) on stem/progenitor cell lineage-commitment can contribute towards the design of improved cell delivery strategies. This thesis developed processing methods that conserved ECM bioactivity to generate well-characterized 2- and 3-D culture platforms that facilitated the evaluation of ECM composition on the adipogenic and osteogenic differentiation of human adipose-derived stromal cells (ASCs). Initial work compared α-amylase and pepsin digestion as methods to fabricate ECM coatings. The effects of enzyme processing and ECM composition were explored using human decellularized adipose tissue (DAT) and bovine tendon collagen …


The Role Of The Mechanical Environment On Cd117+ Endothelial Cell Angiogenesis, Patrick Link Jan 2019

The Role Of The Mechanical Environment On Cd117+ Endothelial Cell Angiogenesis, Patrick Link

Theses and Dissertations

Angiogenesis is a complex process coordinating cell migration, proliferation, and lumen formation. Changes to the microenvironment regulate angiogenesis through mechanotransduction and cytokine signals. In pulmonary hypertension, something in the process becomes abnormal, resulting in changes to the microenvironment and the formation of a glomerulus of dysfunctional capillaries, called a plexiform lesion. Endothelial cells, expressing CD117 (CD117+ EC clones) increase in the plexiform lesions of pulmonary hypertension, independent of pro-angiogenic VEGF signaling. We hypothesize that the mechanical environment and the macromolecular composition of the extracellular matrix, both, contribute to the aberrant angiogenesis. When we changed the mechanical environment, we changed the …


Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb Dec 2017

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) represents a promising adipogenic bioscaffold for applications in soft tissue augmentation or reconstruction. With the goal of investigating the role of syngeneic donor adipose-derived stem/stromal cells (ASCs) and host myeloid cells during in vivo adipose tissue regeneration, transgenic reporter mouse strains were used to track these cell populations within ASC-seeded and unseeded DAT scaffolds. Donor ASCs were obtained from dsRed transgenic mice. These cells were shown to express characteristic cell surface markers, and multilineage differentiation capacity was confirmed. To facilitate cell tracking, DAT scaffolds were subcutaneously implanted into MacGreen mice in which myeloid cells express enhanced …


Electrospraying Extracellular Matrix To Form Nanoparticles, Patrick Link Jan 2017

Electrospraying Extracellular Matrix To Form Nanoparticles, Patrick Link

Theses and Dissertations

Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of death worldwide. Alveolar wall destruction is a significant contributor to COPD. Inflammatory macrophages are a major source of the Extracellular Matrix (ECM) proteolysis. ECM breakdown causes air to get trapped in the alveoli, obstructing airflow. One step in curing COPD may be to convert inflammatory to pro-regenerative macrophages. Recently, decellularized ECM scaffolds have shown the ability to induce a pro-regenerative phenotype.

Yet these scaffolds are incapable for reaching the alveolar region of the lungs. To reach the alveolar region particles need a diameter of 1-5 μm or smaller than 300 …


Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker Dec 2016

Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker

Graduate Theses and Dissertations

Following injury to the central nervous system, extracellular modulations are apparent at

the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of …


Adipose-Derived Stem Cell Differentiation In Cell Aggregates Supplemented With Micronized, Decellularized Extracellular Matrix, Danielle Heinbuch Oct 2016

Adipose-Derived Stem Cell Differentiation In Cell Aggregates Supplemented With Micronized, Decellularized Extracellular Matrix, Danielle Heinbuch

Electronic Thesis and Dissertation Repository

In the human body there are tissues with limited regenerative potential, raising the need for cell-based regenerative therapies. The main objective of this thesis was to examine how tissue-specific extracellular matrix (ECM) affects the differentiation of human adipose-derived stem/stromal cells (ASCs). The effects of incorporating milled, decellularized adipose (DAT) or cartilage (DCT) ECM particles on ASC lineage-specific differentiation in 3-D cell aggregate cultures were explored. The results demonstrated that the addition of ECM improved differentiation for both adipogenesis and chondrogenesis. Analysis of adipogenic gene and protein expression indicated enhanced differentiation in the DAT+ASC aggregates relative to the DCT+ASC and ASC-alone …


Gamma-Radiation Exposure Alters The Cardiovascular Extracellular Matrix., Nicholas Allen Aug 2016

Gamma-Radiation Exposure Alters The Cardiovascular Extracellular Matrix., Nicholas Allen

Electronic Theses and Dissertations

Ionizing radiation has been associated with various cardiovascular complications; however, the associated molecular changes from radiation exposure still remain largely uncharacterized. Alterations to the cardiovascular tissue microenvironment, i.e. the extracellular matrix (ECM), directly affect the function of integrated vascular cells, including cell adhesion, potential to form vessels, and endothelial permeability, which can promote cardiovascular pathologies. The ECM is constantly remodeled in response to stimuli, such as TGF-β1, which leads to excessive ECM accumulation. We hypothesize that radiation exposure will alter the cardiovascular ECM. Human Cardiac Fibroblasts (HCFs) were utilized to produce ECM as an in vitro model to study changes …


A Comparative Study On Calcification Of Aortic Valves, Shirin Masjedi May 2016

A Comparative Study On Calcification Of Aortic Valves, Shirin Masjedi

Doctoral Dissertations

Calcific Aortic Valve Disease (CAVD) is a major disorder in the developed countries among elderly. It is characterized by calcific deposition and stiffening of the aortic valve cusps. CAVD is a highly cell-mediated condition where valvular interstitial cells (VICs) become activated and differentiate into osteoblast-like cells. This is associated with upregulation of calcific markers like Alkaline phosphatase (ALP) and Runx2. ECM remodeling in another characteristic of stenotic aortic valves due to VIC activation. Reports show that CAVD initiates majorly on the noncoronary side of the aortic valves. Additionally, male sex is a significant risk factor of CAVD. Aortic valves are …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve Aug 2015

Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The field of regenerative medicine seeks to create replacement tissues and organs, both to repair deficiencies in biological function and to treat structural damage caused by injury. Scaffoldings mimicking extracellular matrix (ECM), the structure to which cells attach to form tissues, have been developed from synthetic polymers and also been prepared by decellularizing adult tissue. However, the structure of ECM undergoes significant remodeling during natural tissue repair, suggesting that ECM-replacement constructs that mirror developing tissues may promote better regeneration than those modeled on adult tissues. This work investigated the effectiveness of a method of viewing the extracellular matrix of developing …


Characterization Of Human Muscle Extracellular Matrix, Lauren Klaire Wilson Jul 2015

Characterization Of Human Muscle Extracellular Matrix, Lauren Klaire Wilson

Graduate Theses and Dissertations

The performance of extracellular matrix (ECM) biological scaffolds for the treatment of volumetric muscle loss (VML) has shown promising results with regenerating native muscle in animal models and human patients. However, the limitations of these scaffolds include non-specific characteristics based on the original parameters of the muscle that is lost and this is why our group chose to characterize human skeletal ECM. By understanding the characteristics of the native human skeletal ECM, more desired queues for the biological scaffolds being used to treat VML can be provided. Upper limb and lower limb skeletal muscles were commercially obtained, decellularized using common …


Fibroblast-Derived Extracellular Matrix: An Alternative Cell Culture Substrate That Alters Lung Cancer Cell Line Phenotype., Michael Thomas Scherzer Jun 2015

Fibroblast-Derived Extracellular Matrix: An Alternative Cell Culture Substrate That Alters Lung Cancer Cell Line Phenotype., Michael Thomas Scherzer

Electronic Theses and Dissertations

Poor lung cancer survival can largely be contributed to the metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues that change the growing tumor’s properties. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, allowing cancer cells to invade tissue and survive away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor …


Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young Dec 2014

Induction Of Differentiation Of Dental Pulp-Derived Mesenchymal Stem Cells (Dpsc), Aubrey Young

UNLV Theses, Dissertations, Professional Papers, and Capstones

Mesenchymal stem cells are derived from a variety of human tissues and are being bioengineered and studied for possible uses in the advancement of medicine. Recent efforts are being focused on Dental Pulp Stem Cells (DPSC's) due to the accessibility of this tissue. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates.

The objective …


In Vivo Method For Labeling And Tracking Cells In The Mammalian Limb Bud, James T. Mccarthy, Andrew Schilb, Sarah Calve Oct 2013

In Vivo Method For Labeling And Tracking Cells In The Mammalian Limb Bud, James T. Mccarthy, Andrew Schilb, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The extracellular matrix (ECM) is composed of many different proteins excreted by cells and is believed to play a very important role in development as well as regeneration and wound healing. In this research, a method to determine the ECM’s effect on the migration of muscle progenitor cells into the mammalian limb bud was investigated. It has traditionally been difficult to obtain in vivo images of the limb bud, due to the difficulty of maintaining embryos in culture and limitations of imaging techniques. In this study, we have worked on optimizing the culture conditions to allow growth of mouse embryos …


Scaffold Composition And Architecture Critically Regulate Extracellular Matrix Synthesis By Cardiomyocytes, Arsela Gishto Jan 2013

Scaffold Composition And Architecture Critically Regulate Extracellular Matrix Synthesis By Cardiomyocytes, Arsela Gishto

ETD Archive

Heart failure accounts for over 5 million cases in the U.S. A major onset of this is myocardial infarction, which causes the myocardium to loose cardiomyocytes and transform into a scar tissue. Given that the adult infarcted cardiac tissue has a limited ability to regenerate, alternative methods to restore the damaged area need to be developed. The goal of these approaches is to design an optimal scaffold that can retain and deliver cardiomyocytes at the site of damaged myocardium. This tissue engineering approach would allow cardiac reconstruction by replacing the lost cardiomyocytes, delivering the required biomolecules, as well as remodeling …


Alignment And Composition Of Laminin-Polycaprolactone Nanofiber Blends Enhance Peripheral Nerve Regeneration, Rebekah A. Neal, Sunil S. Tholpady, Patricia L. Foley, Nathan Swami, Roy C. Ogle, Edward A. Botchwey Jan 2012

Alignment And Composition Of Laminin-Polycaprolactone Nanofiber Blends Enhance Peripheral Nerve Regeneration, Rebekah A. Neal, Sunil S. Tholpady, Patricia L. Foley, Nathan Swami, Roy C. Ogle, Edward A. Botchwey

School of Medical Diagnostics & Translational Sciences Faculty Publications

Peripheral nerve transection occurs commonly in traumatic injury, causing deficits distal to the injury site. Conduits for repair currently on the market are hollow tubes; however, they often fail due to slow regeneration over long gaps. To facilitate increased regeneration speed and functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in regeneration. To that end, laminin and lamininpolycaprolactone (PCL) blend nanofibers were fabricated to mimic peripheral nerve basement membrane. In vitro assays established 10% (wt) laminin content is sufficient to retain neurite-promoting effects of laminin. In addition, modified collector …


Molecular Modeling Of Proteins And Peptides Related To Cell Attachment In Vivo And In Vitro, Wanhua Zhao Jul 2006

Molecular Modeling Of Proteins And Peptides Related To Cell Attachment In Vivo And In Vitro, Wanhua Zhao

Doctoral Dissertations

Polypeptides constitute half of the dry mass of the cell, they form the bulk of the extracellular matrix (ECM), and they are a common element of extra- and intracellular signaling pathways. There is increasing interest in the development of computational methods in polypeptide and protein engineering on all length scales. This research concerns the development of computational methods for study of polypeptide interactions related to cell attachment in vivo and in vitro.

Polypeptides are inherently biocompatible, and an astronomical range of unique sequences can be designed and realized in massive quantities by modern methods of synthesis and purification. These …


Development Of Self-Assembled Monolayer-Based Cell Culture Platform Towards Fabrication Of A Three-Dimensional Bioreactor, Rajendra Kandoor Aithal Apr 2006

Development Of Self-Assembled Monolayer-Based Cell Culture Platform Towards Fabrication Of A Three-Dimensional Bioreactor, Rajendra Kandoor Aithal

Doctoral Dissertations

The extracellular matrix (ECM) plays an important role in regulating a number of cellular properties and functions like cell differentiation, cell synthesis and degradation, cell viability and proliferation, cell function, and cell aging. Surface modification of planar substrates with self-assembled monolayers (SAMs) is a promising technique to achieve stable ECMs.

In this work, substrates such as silicon (Si), gallium arsenide (GaAs) and indium tin oxide (ITO) substrates were modified with SAMS containing amino (-NH2), methyl (-CH3), thiol (-SH) and carboxylic (-COOH) end groups and characterized using contact angle measurements, surface infrared (IR) spectroscopy and atomic force microscopy (AFM). Different cell …


Determination Of The Mechanical Properties Of Electrospun Gelatin Based On Polymer Concentration And Fiber Alignment, Leander Taylor Iii Jan 2006

Determination Of The Mechanical Properties Of Electrospun Gelatin Based On Polymer Concentration And Fiber Alignment, Leander Taylor Iii

Theses and Dissertations

The process of electrospinning has given the field of tissue engineering insight into many aspects of tissue engineered scaffolds, including how factors such as fiber diameter and porosity are affected by polymer concentration. However, the affects of fiber alignment upon the material properties of electrospun scaffolds remains unclear. The purpose of this study is to determine how the material properties of electrospun gelatin scaffolds are affected by changes in fiber alignment and starting gelatin concentration. Gelatin scaffolds, with starting concentrations of 80, 100, and 130mg/m1, were electrospun onto a target mandrel rotating at various speeds. Samples of each scaffold were …