Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla Jun 2015

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla

Master's Theses

Osteoarthritis (OA) is a degenerative condition of articular cartilage that affects more than 25 million people in the US. Joint injuries, like anterior cruciate ligament (ACL) tears, can lead to OA due to a change in articular cartilage loading. Gait analysis combined with knee joint finite element modeling (FEM) has been used to predict the articular cartilage loading. To predict the change of articular cartilage loading during gait due to various ACL injuries, a tibiofemoral FEM was developed from magnetic resonance images (MRIs) of a 33 year male, with no prior history of knee injuries. The FEM was validated for …


Sagittal Subtalar And Talocrural Joint Assessment With Weight-Bearing Fluoroscopy During Barefoot Ambulation, Ben Mchenry, Emily L. Exten, Jason Long, Brian Law, Richard Marks, Gerald F. Harris Apr 2015

Sagittal Subtalar And Talocrural Joint Assessment With Weight-Bearing Fluoroscopy During Barefoot Ambulation, Ben Mchenry, Emily L. Exten, Jason Long, Brian Law, Richard Marks, Gerald F. Harris

Biomedical Engineering Faculty Research and Publications

Background: Identifying talar position during ambulation has proved difficult as the talus lacks palpable landmarks for skin marker placement and more invasive methodologies such as bone pins are not practical for most clinical subjects. A fluoroscopic motion system was used to track the talus and calcaneus, allowing kinematic analysis of the talocrural and subtalar joints.

Methods: Thirteen male subjects (mean age 22.9 ± 3.0 years) previously screened for normal gait were tested. A fluoroscopy unit was used to collect images at 120 fps during stance. Sagittal motion of the talocrural and subtalar joints were analyzed.

Results: The intersubject mean and …