Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Investigating The Therapeutic Potential Of Salivary Proteins For Oral Diseases, Dusa Vukosavljevic Dec 2012

Investigating The Therapeutic Potential Of Salivary Proteins For Oral Diseases, Dusa Vukosavljevic

Electronic Thesis and Dissertation Repository

ABSTRACT

Saliva is responsible for the formation of the acquired enamel pellicle (AEP), a protein

integument formed as a result of selective adsorption of salivary proteins to the enamel

surface. The AEP demonstrates an important role for modulating dental erosion as a

result of its physical properties, along with its salivary and exogenous protein

composition (Chapter 2). In addition, individual proteins that comprise the AEP have

important physiological functions. Histatin 5 (H5) has potent antifungal effect against C.

albicans, the yeast responsible for the initiation of oral candidiasis. We designed an in

vitro model and found, for the first time, …


Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa Oct 2012

Calcium Phosphate-Based Resorbable Biomaterials For Bone Regeneration, Daniel O. Costa

Electronic Thesis and Dissertation Repository

Bone defects are a prevalent problem in orthopedics and dentistry. Calcium phosphate-based coatings and nanocomposites offer unique solutions towards producing scaffolds with suitable physical, mechanical and biological properties for bone regeneration.

We developed a novel method to synthesize hydroxyapatite (HA) particles with high aspect ratio using sol-gel chemistry and hydrothermal treatment. We obtained tunable pure-phase carbonated-HA in the form of micro/nanorods and nanowires (diameters 25-800 nm). To mimic the structure of bone, HA nanowires were homogenously mixed within poly(ε-caprolactone) (PCL) to produce nanocomposites with improved mechanical properties as determined by uniaxial tensile testing.

Surface chemistry and topography of biomaterials play …


Bacterial Cellulose Templates For Nano-Hydroxyapatite Fibre Synthesis, Jordan A. Demello Feb 2012

Bacterial Cellulose Templates For Nano-Hydroxyapatite Fibre Synthesis, Jordan A. Demello

Electronic Thesis and Dissertation Repository

Guided bone regeneration is a medical procedure which induces in vivo re-growth of bone using membranes and osteopromoting fillers. In this work, bacterial cellulose fibers were isolated and used as a basis for biomimetic hydroxyapatite growth, with the ultimate goal of producing GBR filler materials. Acetobacter xylinum generated BC using various carbon sources. Fibers were treated with phosphoric acid to phosphorylate functional groups and preconditioned with calcium to nucleate the HA. Simulated body fluid (SBF) furthered the growth. Over 14 days, the product was characterized via EDX, SEM, FTIR, and XRD. The effect of media composition, phosphorylation time, pretreatment, and …