Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering

University of Tennessee, Knoxville

Theses/Dissertations

Droplet interface bilayer

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Engineering Platforms For Advancing Plant Synthetic Biology, Tayler Marie Schimel Mcneillie Dec 2020

Engineering Platforms For Advancing Plant Synthetic Biology, Tayler Marie Schimel Mcneillie

Doctoral Dissertations

This work describes research aimed at adapting advanced engineering systems for plant biotechnology. The droplet interface bilayer (DIB) is a robust and versatile platform for replicating model cell membranes, providing a bottom-up approach for synthetic cell- and tissue-like structures. In this work, a microfluidic device featuring five inlets, one for the continuous oil phase and four discrete aqueous channels for droplet generation was designed. Droplet production rates were controlled by adjusting the applied pressure of each inlet; and thus, altering the droplet sequence for capturing linear DIB networks in a downstream hydrodynamic trapping array. This microfluidic system provides a high-throughput …


Assessment Of The Use Of Low Molecular Weight Diblock Copolymers For The Formation Of Stable, Tunable Droplet Interface Bilayers, Joseph Tawfik Dec 2020

Assessment Of The Use Of Low Molecular Weight Diblock Copolymers For The Formation Of Stable, Tunable Droplet Interface Bilayers, Joseph Tawfik

Masters Theses

This thesis presents the use of diblock copolymers, poly(butadiene)-b-poly(ethylene oxide) (PBm PEOn) and poly(isoprene)-b-poly(ethylene oxide) (PImPEOn), as amphiphilic molecular building blocks for the formation of synthetic polymer bilayer membranes using the droplet interface bilayer (DIB) technique. The DIB technique makes use of the self-assembly of amphiphilic macromolecules along oil-water droplet interfaces that can then be physically connected for the construction of liquid supported macromolecular bilayers at the droplet interface. These bilayer membranes are capable of hosting both naturally occurring and synthetic protein channels. This technique has been used to form synthetic bilayer membranes …


High-Throughput Functional System For Encapsulated Networks Of Model Cell Membranes, Mary-Anne Kim Anh Nguyen May 2017

High-Throughput Functional System For Encapsulated Networks Of Model Cell Membranes, Mary-Anne Kim Anh Nguyen

Doctoral Dissertations

Synthetic lipid bilayers provide models of cell membranes to study biomolecular interactions and signal transduction. The droplet interface bilayer (DIB) is a highly versatile technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. In this work, a new microfluidic system is presented that automates droplet generation, sorting, and sequential trapping in designated locations to enable rapid assembly of arrays of DIBs along with in situ electrical measurements. This platform provides repeatable processes for forming …


Characterization And Manipulation Of Lipid Self-Assembly To Construct Stable, Portable Synthetic Lipid Bilayers, Guru Anand Venkatesan May 2017

Characterization And Manipulation Of Lipid Self-Assembly To Construct Stable, Portable Synthetic Lipid Bilayers, Guru Anand Venkatesan

Doctoral Dissertations

The overarching goal of this research work is to further our understanding of lipid self-assembly and its organization at an oil-water interface to support the development of synthetic lipid bilayer systems that can be used in biologically relevant fields such as membrane biophysics, protein electrophysiology, development of synthetic biomolecules, drugs, nanoparticles and other applications. Self-assembly kinetics and interfacial properties of lipid monolayers formed at a liquid-air and liquid-liquid interface are characterized using Langmuir-Blodgett trough and pendant drop tensiometer. Insights gained from these studies not only allow us to answer questions related to droplet interface bilayer (DIB; a promising technique to …