Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Experimental Measurement Of Dolphin Thrust Generated During A Tail Stand Using Dpiv, Frank E. Fish, Terrie M. Williams, Erica Sherman, Yae Eun Moon, Vicki Wu, Timothy Wei Jun 2018

Experimental Measurement Of Dolphin Thrust Generated During A Tail Stand Using Dpiv, Frank E. Fish, Terrie M. Williams, Erica Sherman, Yae Eun Moon, Vicki Wu, Timothy Wei

Biology Faculty Publications

: Estimation of force generated by dolphins has long been debated. The problem was that indirect estimates of force production for dolphins resulted in low values that could not be validated. Bubble digital particle image velocimetry (DPIV) measured hydrodynamic force production for swimming dolphins and demonstrated high force production. To validate the bubble DPIV and reconcile force production measurements, two bottlenose dolphins (Tursiops truncatus) performing tail stands were measured with bubble DPIV. Microbubbles were generated from a finely porous hose and compressed air source. Displacement of the bubbles by the propulsive motions of the dolphin was tracked with a high-speed …


Kinematics Of Swimming Of The Manta Ray: Three-Dimensional Analysis Of Open Water Maneuverability, Frank E. Fish, Allison Kolpas, Andrew Crossett, Michael A. Dudas, Keith W. Moored, Hilary Bart-Smith Mar 2018

Kinematics Of Swimming Of The Manta Ray: Three-Dimensional Analysis Of Open Water Maneuverability, Frank E. Fish, Allison Kolpas, Andrew Crossett, Michael A. Dudas, Keith W. Moored, Hilary Bart-Smith

Biology Faculty Publications

For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult particularly in the field. To measure turning performance in a three-dimensional space for the manta ray (Mobula birostris), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal …