Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Unraveling The Mechanical Properties Of Composite Silk Threads Spun By Cribellate Orb-Weaving Spiders, Todd Blackledge, Cheryl Hayashi Aug 2006

Unraveling The Mechanical Properties Of Composite Silk Threads Spun By Cribellate Orb-Weaving Spiders, Todd Blackledge, Cheryl Hayashi

Todd A. Blackledge

Orb-web weaving spiders depend upon the mechanical performance of capture threads to absorb the energy of flying prey. Most orb-weavers spin wet capture threads with core fibers of flagelliform silk. These threads are extremely compliant and extensible due to the folding of their constituent proteins into molecular nanosprings and hydration by a surrounding coating of aqueous glue. In contrast, other orb-weavers use cribellate capture threads, which are composite structures consisting of core fibers of pseudoflagelliform silk surrounded by a matrix of fine dry cribellar fibrils. Based on phylogenetic evidence, cribellate capture threads predate the use of viscid capture threads. To …


Silken Toolkits: Biomechanics Of Silk Fibers Spun By The Orb Web Spider Argiope Argentata (Fabricius 1775), Todd A. Blackledge, Cheryl Y. Hayashi Dec 2005

Silken Toolkits: Biomechanics Of Silk Fibers Spun By The Orb Web Spider Argiope Argentata (Fabricius 1775), Todd A. Blackledge, Cheryl Y. Hayashi

Todd A. Blackledge

Orb-weaving spiders spin five fibrous silks from differentiated glands that contain unique sets of proteins. Despite diverse ecological functions, the mechanical properties of most of these silks are not well characterized. Here, we quantify the mechanical performance of this toolkit of silks for the silver garden spider Argiope argentata. Four silks exhibit viscoelastic behaviour typical of polymers, but differ statistically from each other by up to 250% in performance, giving each silk a distinctive suite of material properties. Major ampullate silk is 50% stronger than other fibers, but also less extensible. Aciniform silk is almost twice as tough as other …