Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 44

Full-Text Articles in Entire DC Network

State-Of-The-Art Approaches For Sequencing, Assembling And Annotating Naphthenic Acid Degrading Bacterial Metagenomes, Henry H. Say Aug 2023

State-Of-The-Art Approaches For Sequencing, Assembling And Annotating Naphthenic Acid Degrading Bacterial Metagenomes, Henry H. Say

Electronic Thesis and Dissertation Repository

Naphthenic acids (NAs) are the main toxic component of oil refinery wastewater and require special processes to be removed. Harnessing bacterial biodegradation for NA removal has the potential to be effective, yet NA-degrading bacteria and pathways are poorly understood and uncharacterized. To improve our understanding of NA degradation, I characterize the metagenomes of novel NA-degrading bacterial communities seeded in NA-enriched granulated activated carbon (GAC) filters. I demonstrate methods that maximize the throughput of extraction, sequencing, and annotation of novel metagenomes - producing 72 MAGs and other 5432 circular contigs - 226 of which were putative phages. I also include state-of-the-art …


Annotation Of Non-Model Species’ Genomes, Taiya Jarva Jul 2023

Annotation Of Non-Model Species’ Genomes, Taiya Jarva

Master's Theses

The innovations in high throughput sequencing technologies in recent decades has allowed unprecedented examination and characterization of the genetic make-up of both model and non-model species, which has led to a surge in the use of genomics in fields which were previously considered unfeasible. These advances have greatly expanded the realm of possibilities in the fields of ecology and conservation. It is now possible to the identification of large cohorts of genetic markers, including single nucleotide polymorphisms (SNPs) and larger structural variants, as well as signatures of selection and local adaptation. Markers can be used to identify species, define population …


Vibes: A Workflow For Annotating And Visualizing Viral Sequences Integrated Into Bacterial Genomes, Conner J. Copeland Jan 2023

Vibes: A Workflow For Annotating And Visualizing Viral Sequences Integrated Into Bacterial Genomes, Conner J. Copeland

Graduate Student Theses, Dissertations, & Professional Papers

Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists, and have been demonstrated to increase host virulence. The increasing ease of bacterial genome se- quencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES, a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bac- terial genes and viral proteins in user-provided bacterial and …


Methods For Extending Biomedical Reference Ontologies And Interface Terminologies For Ehrr Text Annotation, Vipina Kuttichi Keloth May 2021

Methods For Extending Biomedical Reference Ontologies And Interface Terminologies For Ehrr Text Annotation, Vipina Kuttichi Keloth

Dissertations

Biomedical ontologies and terminologies are a cornerstone in various electronic health record systems (EHRs) for encoding information related to diseases, diagnoses, treatments, etc. Ontologies in general represent entities (concepts) and events along with all interdependent properties and relationships in an efficient way to facilitate easy access, retrieval and sharing. With the landscape of medicine rapidly changing, biomedical ontologies and terminologies need to rapidly evolve to support interoperability, medical coding, record keeping, and healthcare activities in general, and to facilitate interdisciplinary research. Extending ontologies by identifying new and missing concepts plays a vital role in the maintenance of ontologies to keep …


Polya: A Tool For Adjudicating Competing Annotations Of Biological Sequences, Kaitlin Carey Jan 2021

Polya: A Tool For Adjudicating Competing Annotations Of Biological Sequences, Kaitlin Carey

Graduate Student Theses, Dissertations, & Professional Papers

Annotation of a biological sequence is usually performed by aligning that sequence to a database of known sequence elements. When that database contains elements that are highly similar to each other, the proper annotation may be ambiguous, because several entries in the database produce high-scoring alignments. Typical annotation methods work by assigning a label based on the candidate annotation with the highest alignment score; this can overstate annotation certainty, mislabel boundaries, and fails to identify large scale rearrangements or insertions within the annotated sequence. Here, I present a new software tool, PolyA, that adjudicates between competing alignment-based annotations by computing …


Mrub_3015 Is Orthologous To The B2757 Gene Found In Escherichia Coli Coding For Casd, Ramona Collins, Dr. Lori Scott Feb 2019

Mrub_3015 Is Orthologous To The B2757 Gene Found In Escherichia Coli Coding For Casd, Ramona Collins, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of the gene Mrub_3015, which we hypothesize is a component of the CRISPR-Cas prokaryotic defense system. We predict that Mrub_3015 (DNA coordinates 3055550...3056245) encodes the the CRISPR-associated protein cas5, which is integral in maintaining the crRNA-DNA structure, keeping the complex from base pairing with the target phage DNA. Our hypothesis is supported by identical hits for Mrub_3015 and b2527 to the KEGG, Pfam, TIGRfam, CDD and PDB databases as well as a …


Mrub_3018 Is Orthologous To E. Coli B2759 (Casb), Kyle Parker, Dr. Lori Scott Feb 2019

Mrub_3018 Is Orthologous To E. Coli B2759 (Casb), Kyle Parker, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We studied the biological activity of the Mrub_3018 gene, which we hypothesize is orthologous to E. coli gene B2759. We predicted that Mrub_3018(DNA coordinates 3057916… 3058524) encodes the protein CasB. CasB is a protein in the CRISPR CASCADE that will function as a structural protein. When the rest of the proteins form an “S” formation CasB will connect the front and back of the “S” creating a back bone for the structure. It will help bind DNA …


Mrub_3014 Is Orthologous To B2756, Samir Abdelkarim, Dr. Lori Scott Jan 2019

Mrub_3014 Is Orthologous To B2756, Samir Abdelkarim, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of the gene Mrub_3014, which we hypothesize is a component of the CRISPR-Cas prokaryotic defense system. We predict that Mrub_3014 (DNA coordinates 3054943..3055575) encodes CRISPR-associated protein Cse3/case which function as an endonuclease. Our hypothesis is supported by identical hits for Mrub_3014 and b2756 to the KEGG, Pfam, TIGRfam, CDD and PDB databases, as well as a low E-value for a pairwise NCBI BLAST comparison. Both protein products are predicted to be localized …


M. Ruber Mrub_3013 Is Orthologous To E. Coli B2755, Laura Butcher, Dr. Lori Scott Jan 2019

M. Ruber Mrub_3013 Is Orthologous To E. Coli B2755, Laura Butcher, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of gene Mrub_3013, which we hypothesize is orthologous to b2755 in E. coli K12 MG1655 (a.k.a. Cas1). We investigated the biological function of a gene with the M. ruber locus tag of Mrub_3013, which we hypothesize is a component of the CRISPR-Cas prokaryotic defense system in M. ruber. We predict that Mrub_3013 (DNA coordinates 3,053,978-3,054,940) encodes the protein Cas1 which as part of the CRISPR-Cas system, selects and cuts the foreign …


Mrub_3020, A Paralog Of Mrub_1489, Is Orthologous To E. Coli Casc (Locus Tag B2761), Alfred Dei-Ampeh, Dr. Lori Scott Jan 2019

Mrub_3020, A Paralog Of Mrub_1489, Is Orthologous To E. Coli Casc (Locus Tag B2761), Alfred Dei-Ampeh, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological functions of two genes: mrub_3020 and mrub_1489. We make two hypotheses in this investigation: a) mrub_3020 is orthologous to the gene b2761 in E. coli K12 MG1655 (a.k.a. casC); b) mrub_1489 is a paralog of mrub_3020. We also predict that the two genes encode unique proteins: mrub_3020 with DNA coordinates 3060491…3063190 encodes a CRISPR – associated helicase (Cas3) that supports the Cascade complex of the CRISPR – Cas adaptive immune system …


Effects Of Temperature On Crispr/Cas System, Eddie Beckom, Dr. Lori Scott Jan 2019

Effects Of Temperature On Crispr/Cas System, Eddie Beckom, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the effect of temperature on the complexity of CRISPR/Cas systems in bacterial organisms across temperature classifications. We predict that temperature extremes would result in CRISPR/Cas systems with multiple operons, repeating cas genes, and complex systems. CRISPR/Cas systems can be classified into three types with a number of subtypes based on the CRISPR-associated genes, cas genes, present in a given organism. Our hypothesis is supported by the presence of multiple operons in thermophilic organisms based on …


An Investigation Into The Relationship Between Mrub_3013, Mrub_1477, And Mrub_0224: Are They Paralogs?, Melette Devore, Dr. Lori Scott Jan 2019

An Investigation Into The Relationship Between Mrub_3013, Mrub_1477, And Mrub_0224: Are They Paralogs?, Melette Devore, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the biological function of mrub_3013 and the nature of its relationship with mrub_1477 and mrub_0224. We hypothesized that mrub_3013 is orthologous to b2755 in E. coli K12 MG1655 (a.k.a. cas1). We predict that mrub_3013 encodes the enzyme Cas1, which is involved in spacer acquisition in the CRISPR-Cas prokaryotic defense system. Our hypothesis is supported by identical hits for b2755, mrub_3013, mrub_1477, and mrub_0224 from the CDD and Pfam databases and highly similar hits from …


Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott Jan 2018

Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes b3725, b3726, b3727, b3728 and Mrub_2518, Mrub_2519, Mrub_2520 and Mrub_2521 (KEGG map number 02010). We predict that these genes encode the components of a Phosphate ABC transporter: Orthologous genes Mrub_2518 (DNA coordinates 2565359..2566438) and b3728 encodes the periplasmic phosphate binding component; Orthologous genes Mrub_2519 (DNA coordinates 2566499..2567485) and b3727, and Mrub_2520 (DNA coordinates 2567496..2568326) and b3726 encode for the two transmembrane proteins; Orthologous genes Mrub_2521 (DNA coordinates 2568338..2569159) and b3725 encode for the ATP binding protein within the cytoplasm. Within the two species, M. ruber and E. coli, …


Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott Jan 2018

Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 (KEGG map number 02010). We predict these genes encode components of a Branched Chain Amino Acid ATP Binding Cassette (ABC) transporter: 1) Mrub_1325 (DNA coordinates 1357399-1358130 on the reverse strand) encodes the ATP binding domain; 2) Mrub_1326 (DNA coordinates 1358127-1359899 on the reverse strand) encodes the ATP-binding domain and permease domain; 3) Mrub_1327 (DNA coordinates 1359899-1360930 on the reverse strand) encodes a permease domain; and 4)Mrub_1328 (DNA coordinates 1711022-1712185 on the reverse strand) encodes the substrate binding domain. This system is not predicted to …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Mrub_1283, Mrub_1284 And Mrub_1285 Encode For A Glycine/Betaine Abc Transporter And Are Orthologs Of E. Coli Prov, Prow And Prox, Lan Dang, Dr. Lori Scott Jan 2018

Mrub_1283, Mrub_1284 And Mrub_1285 Encode For A Glycine/Betaine Abc Transporter And Are Orthologs Of E. Coli Prov, Prow And Prox, Lan Dang, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

ABC transporters are essential for cellular transport; contribute to maintain the homeostasis of the cells. Generally, ABC transporters are multi-subunit; contain essential cytoplasmic factors which are critical to ATP hydrolysis activity. In this paper, we would like to take a closer look to Mrub_1283, Mrub_1284 and Mrub_1285, three consecutive genes in Meiothermus ruber genome. We hypothesize that these genes are in the same operon and encode for ABC glycine/ betaine transporters. To confirm our hypothesis, we utilizes several bioinformatics tools to predict the potential function of Mrub_1283, Mrub_1284 and Mrub_1285 and to search for their orthologs in Escherichia coli genome. …


Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott Jan 2018

Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 and Mrub_2124 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2120 (DNA coordinates 2169247-2170416 on the reverse strand) encodes the branched-chain amino acid binding protein that is localized to the periplasm; 2) Mrub_2121 (DNA coordinates 2170433..2171353 on the reverse strand) encodes the first TMD; 3) Mrub_2122 (DNA coordinates 2171365..2172279 on the reverse strand) encodes the second TMD; 4) Mrub_2123 (DNA coordinates 2172276..2173028 on the reverse strand) encodes the first NBD; 5) Mrub_2124 …


Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott Jan 2018

Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1675, Mrub_1676, Mrub_1677, and Mrub_1679 (KEGG map number 02010). We predict these genes encode components of a Branched chain amino acid (ABC) transporter: Mrub_1675 (DNA coordinates 1711022..1712185 on the reverse strand) encodes the permease component, Mrub_1676 (DNA coordinates 1712313..1713170) encodes for the NBD (aka nucleotide binding domain), Mrub_1677 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the NBD (aka nucleotide binding domain), Mrub_1678 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the TMD (aka transmembrane domain) and Mrub_1679 (DNA coordinates 1714781..1715485 on the reverse strand) encodes …


Mrub_0680, Mrub_0836, And Mrub_0837 Found To Be Orthologous To E. Coli Ccma, Ccmb, And Ccmc, Respectively, Coding For Abc-Transport Proteins Involved In Cytochrome-C Biogenesis, Sarah N. Church, Dr. Lori Scott Jan 2018

Mrub_0680, Mrub_0836, And Mrub_0837 Found To Be Orthologous To E. Coli Ccma, Ccmb, And Ccmc, Respectively, Coding For Abc-Transport Proteins Involved In Cytochrome-C Biogenesis, Sarah N. Church, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_0680, Mrub_0836 and Mrub_0837(KEGG map number 02010). We predict these genes encode components of a Heme ATP Binding Cassette (ABC) transporter: 1) Mrub_0836 (DNA coordinates 823734..824399on the reverse strand) encodes the permease component (aka transmembrane domain), predicted to be an ortho; and 2) Mrub_0680(DNA coordinates 659484..660071 on the reverse strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_0837(DNA coordinates 824570..825262on the reverse strand) encodes the solute binding protein. This gene system encodes a transmembrane exporter and helper proteins which are thought to …


Isolation And Comparative Genomic Analysis Of Final Third Of Satis Genome, Kelly Hartigan, Nicole Curnutt, Matthew Mcdermut May 2017

Isolation And Comparative Genomic Analysis Of Final Third Of Satis Genome, Kelly Hartigan, Nicole Curnutt, Matthew Mcdermut

Undergraduate Research Symposium Posters

A highly novel Streptomyces phage, Satis, was isolated from a direct environmental sample collected from outside Danforth House on the Washington University campus. Satis infects bacterial species Streptomyces lividans producing pinpoint, cloudy plaques less than 1mm in diameter. Electron microscope data shows rare atypical physical features. Rather than the common octahedral capsid shape, Satis has a prolate head with visible cross-linked hexagonal protein structure and average measurements of 285 nm by 47 nm with a long, flexible tail measuring 268 nm. Upon sequencing, it was found that Satis contains the longest phage genome discovered to date through the SEA-PHAGE program …


Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott Jan 2017

Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1873, Mrub_1872, and Mrub_1871.We predict that Mrub_1873 (DNA coordinates 1933743..1934309 on the reverse strand), Mrub_1872 (DNA coordinates 1932430..1933746 on the reverse strand), and Mrub_1871 (DNA coordinates 1930055..1932421 on the reverse strand) are subunits of the NADH ubiquinone oxidoreductase complex (00190). The complex catalyzes both the transfer of protons across the cytoplasmic membrane and the transfer of electrons to ubiquinone during …


Serine Biosynthesis And Glycine Biosynthesis/Degradation: Mrub_0173 Is Orthologous To E. Coli B2913 (Sera); Mrub_0125 Is Orthologous To E. Coli B4388 (Serb); Mrub_2910 Is Orthologous To E. Coli B2551 (Glya)., Megan M. Janssen, Dr. Lori R. Scott Jan 2017

Serine Biosynthesis And Glycine Biosynthesis/Degradation: Mrub_0173 Is Orthologous To E. Coli B2913 (Sera); Mrub_0125 Is Orthologous To E. Coli B4388 (Serb); Mrub_2910 Is Orthologous To E. Coli B2551 (Glya)., Megan M. Janssen, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

ABSTRACT. This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_0173, Mrub_0125, and Mrub_ 2910. We predict that Mrub_0173 encodes the enzyme phosphoglycerate dehydrogenase (DNA coordinates 152982 ... 154347), which is the 1st step of the serine biosynthesis pathway (KEGG map number 00680). It catalyzes the conversion of NAD+ + 3-phospho-D-glycerate → NADH H+ + 3-phospho-hydroxypyruvate. The E. coli K12 MG1655 ortholog is predicted to be b2913, which has …


Mrub_3029, Mrub_2052, Are Predicted Orthologs Of B_0688, B_0394, While Mrub_0759 And Mrub_2365 Are Not Predicted Orthologs Of B_1309, In Escherichia Coli, Which Code For Enzymes Involved In Starch And Sucrose Metabolism, Max A. Benstine, Dr. Lori R. Scott Jan 2017

Mrub_3029, Mrub_2052, Are Predicted Orthologs Of B_0688, B_0394, While Mrub_0759 And Mrub_2365 Are Not Predicted Orthologs Of B_1309, In Escherichia Coli, Which Code For Enzymes Involved In Starch And Sucrose Metabolism, Max A. Benstine, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

We predict that Mrub__[0759] encodes the enzyme [Meiothermus ruber Fruktokinase] (DNA coordinates [741282..742202 on the forward strand] which is the 00500 step of the Starch and Sucrose Metabolism pathway (KEGG map number [2.7.1.4]). It catalyzes the conversion of [ATP + D-fructoseADP + D-fructose 6-phosphate]. The E. coli K12 MG1655 ortholog is predicted to be b1309, which has the gene identifier [ycjM] We predict that Mrub__[ 2365] encodes the enzyme [Meiothermus ruber Fruktokinase] (DNA coordinates [2417118..2418059 on the forward strand], which is the [00500] step of the [Starch and Sucrose Metabolism] pathway (KEGG map number [2.7.1.4]). It catalyzes the …


Mrub_2642, Mrub_1054, And Mrub_1059 Genes Are Orthologs Of The Escherichia Coli Genes B2942, B0159, And B2687 Genes, Respectively, Which Code For Methionine Adenosyltransferase, Adenosylhomocysteine Nucleosidase, And S-Ribosylhomocysteine Lyase, Nicholas M. Orslini, Dr. Lori R. Scott Jan 2017

Mrub_2642, Mrub_1054, And Mrub_1059 Genes Are Orthologs Of The Escherichia Coli Genes B2942, B0159, And B2687 Genes, Respectively, Which Code For Methionine Adenosyltransferase, Adenosylhomocysteine Nucleosidase, And S-Ribosylhomocysteine Lyase, Nicholas M. Orslini, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2642, Mrub_1054, and Mrub_1059.

We predict that Mrub_2642 encodes the enzyme methionine adenosyltransferase (DNA coordinates [2677251…2678426] on the reverse strand), the first step of the methionine degradation pathway (KEGG map number 00270). Methionine adenosyltransferase catalyzes the conversion of the substrates, ATP, L-methionine, and water, to yield the products S-adenosyl-L-methionine (SAM), inorganic phosphate, and diphosphate. Mrub_1054 encodes adenosylhomocysteine nucleosidase (DNA …


Annotation Of Genes Involved With Biosynthetic Production Of Peptidoglycan Within Meiothermus Ruber Involving Supposed Orthologous Genes: Mrub_0981 And B1069, Mrub_1162 And B063, Mrub_1999 And B0084., Marckus Simmons, Dr. Lori Scott Jan 2017

Annotation Of Genes Involved With Biosynthetic Production Of Peptidoglycan Within Meiothermus Ruber Involving Supposed Orthologous Genes: Mrub_0981 And B1069, Mrub_1162 And B063, Mrub_1999 And B0084., Marckus Simmons, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

Using bioinformatics tools, the genes within Meiothermus ruber that are involved with peptidoglycan production were annotated. We predict that Mrub_0981 encodes the enzyme Lipid II Flippase (DNA coordinates970078…971580 on the reverse strand), which is the 9th step of the Peptidoglycan biosynthesis pathway (KEGG map number 00550) It catalyzes the conversion of Meso-2,6-diaminopimelate to Peptidoglycan. The E. coli K12 MG1655 ortholog is predicted to be b1069, which has the gene identifier mviN. We also predict that Mrub_1162 encodes the enzyme Penicillin binding protein II (DNA coordinates 1176079…1177836 on the reverse strand), which is the 12th step of the Peptidoglycan biosynthesis …


Mrub_1867, Mrub_1868, And Mrub_1869 Genes Are Predicted Orthologs Of The B2279, B2280, And B2281 Genes Found In Escherichia Coli Coding For The Nadh Dehydrogenase Subunits K, J, And I Respectively, Wade Smith, Dr. Lori R. Scott Jan 2017

Mrub_1867, Mrub_1868, And Mrub_1869 Genes Are Predicted Orthologs Of The B2279, B2280, And B2281 Genes Found In Escherichia Coli Coding For The Nadh Dehydrogenase Subunits K, J, And I Respectively, Wade Smith, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1867, Mrub_1868, and Mrub_1869. We predict that Mrub_1867 (DNA coordinates 1927237..1927527 on the reverse strand), Mrub_1868 (DNA coordinates 1927524..1928123 on the reverse strand), and Mrub_1869 (DNA coordinates 1928248..1928781 on the reverse strand) are subunits of the NADH: ubiquinone oxidoreductase complex (KEGG map number 00190). This complex catalyzes the translocation of H+ across the cytoplasmic …


Bioinformatics Comparison Of M. Ruber Mrub_2507 To E. Coli Pdxk/B1636 And M. Ruber Mrub_2888 To E. Coli Pdxh/B1638 To Determine The Orthologous Nature, Adam Bernardi, Dr. Lori Scott Feb 2016

Bioinformatics Comparison Of M. Ruber Mrub_2507 To E. Coli Pdxk/B1636 And M. Ruber Mrub_2888 To E. Coli Pdxh/B1638 To Determine The Orthologous Nature, Adam Bernardi, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2507 and Mrub_2888. We predict that Mrub_2507 encodes the enzyme pyridoxal kinase (DNA coordinates 2555521..2556402), which is in the Vitamin B6 Metabolism pathway (KEGG map number 00750). It catalyzes the conversion of pyridoxine, pyridoxamine, or pyridoxal to pyridoxine 5’-phosphate, pyridoxamine 5’-phosphate, or pyridoxal 5’-phosphate respectively. The E. coli K12 MG1655 ortholog is predicted to be b1636, which has …


Genomic Analysis Of Meiothermus Ruber Mrub_1907 And Meiothermus Ruber Mrub_1844 With Potential Ortholog Escherichia Coli B3774 Ilvc And Escherichia Coli B3771 Ilvc Gene Through Bioinformatics, Felipe A. Hernandez, Dr. Lori Scott Feb 2016

Genomic Analysis Of Meiothermus Ruber Mrub_1907 And Meiothermus Ruber Mrub_1844 With Potential Ortholog Escherichia Coli B3774 Ilvc And Escherichia Coli B3771 Ilvc Gene Through Bioinformatics, Felipe A. Hernandez, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1907 and Mrub_1844. We predict that Mrub__1907 encodes the enzyme ketol-acid reductoisomerase (DNA coordinates 1966630..1967649 on the reverse strand), which is the fourth step of the L-isoleucine pathway (from threonine) (KEGG map number 00290). It catalyzes the conversion of (R)-3- Hydroxy-3-methyl-2-oxopentanoate to (R)-2-3 Dihydroxy-3-methylpentanoate. The E. coli K12 MG1655 ortholog is predicted to be b3774, which has the gene …


Comparison Of Genes In Meiothermus Ruber And Escherichia Coli In The Thiamine Biosynthesis Pathway, Erin E. Frye, Dr. Lori Scott Feb 2016

Comparison Of Genes In Meiothermus Ruber And Escherichia Coli In The Thiamine Biosynthesis Pathway, Erin E. Frye, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2046 and Mrub_2041.We predict that Mrub_2046 encodes the enzyme phosphomethylpyrimidine kinase (DNA coordinates 2082772..2083572 on the reverse strand), which is the second step of the Thiamine Metabolism pathway (KEGG map number mrb00730). It catalyzes the conversion of 4-Amino-2-methyl-5-phosphomethylpyrimidine to 4-Amino-2-methyl-5-hydroxymethyl diphosphate The E. coli K12 MG1655 ortholog is predicted to be b2103, which has the gene identifier thiD. We …


Meiothermus Ruber Mrub_0976 And Mrub_1641 Share The Same Functions As Escherichia Coli B3940 And B3433 In The Biosynthesis Of Homoserine, Cody Stephans, Dr. Lori Scott Feb 2016

Meiothermus Ruber Mrub_0976 And Mrub_1641 Share The Same Functions As Escherichia Coli B3940 And B3433 In The Biosynthesis Of Homoserine, Cody Stephans, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_0976 and Mrub_1641. We predict that Mrub_0976 encodes the enzyme aspartate kinase (DNA coordinates 964404..965630) which is the 1st step of the homoserine biosynthesispathway (KEGG map number M00018). It catalyzes the conversion L-aspartate to L-asparyl-4-phospate. The E. coli K12 MG1655 ortholog is predicted to be b3940, which has the gene identifier ‘thrA’. We …