Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


Impact Of Intratumor Heterogeneity And The Tumor Microenvironment In Shaping Tumor Evolution And Response To Therapy, Akash Mitra Jun 2021

Impact Of Intratumor Heterogeneity And The Tumor Microenvironment In Shaping Tumor Evolution And Response To Therapy, Akash Mitra

Dissertations & Theses (Open Access)

Intratumor heterogeneity (ITH) is a crucial challenge in cancer treatment. The genotypic and phenotypic heterogeneity underlying diverse cancer types leads to subclonal variation, which may result in mixed or failed response to therapy. The heterogeneity at the tumor level, along with the tumor microenvironment (TME), often shapes tumor evolution and ultimately clinical outcome. Given that modern treatment paradigms increasingly expose patients with metastatic disease to multiple treatment modalities through the course of their disease, there exists a need to characterize robust and predictive biomarkers of response to therapy. In order to accurately characterize tumor evolution, we need to account for …


Biases And Blind-Spots In Genome-Wide Crispr-Cas9 Knockout Screens, Merve Dede May 2021

Biases And Blind-Spots In Genome-Wide Crispr-Cas9 Knockout Screens, Merve Dede

Dissertations & Theses (Open Access)

Adaptation of the bacterial CRISPR-Cas9 system to mammalian cells revolutionized the field of functional genomics, enabling genome-scale genetic perturbations to study essential genes, whose loss of function results in a severe fitness defect. There are two types of essential genes in a cell. Core essential genes are absolutely required for growth and proliferation in every cell type. On the other hand, context-dependent essential genes become essential in an environmental or genetic context. The concept of context-dependent gene essentiality is particularly important in cancer, since killing cancer cells selectively without harming surrounding healthy tissue remains a major challenge. The toxicity of …


Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen May 2021

Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen

Dissertations & Theses (Open Access)

Post-translational modifications (PTMs) drive signal transduction by interacting with "reader" proteins. Protein domain microarray is a high throughput platform to identify novel readers for PTMs. In this dissertation, I applied two protein domain microarrays identifying novel readers for histone H2Aub1 and H2Bub1, and H3TM K4me3. Ubiquitinations of histone H2A at K119 (H2Aub1) and histone H2B at K120 (H2Bub1) function in distinct transcription regulation and DNA damage repair pathways, likely mediated by specific "reader" proteins. There are only two H2Aub1-specific readers identified and no known H2Bub1-specific readers. Using a ubiquitin-binding domain microarray, I discovered the phospholipase A2-activating protein (PLAA) PFU domain …


Rare Variant Association Studies In Crohn’S Disease And Colorectal Cancer: Methods And Applications, Jiun-Sheng Chen May 2021

Rare Variant Association Studies In Crohn’S Disease And Colorectal Cancer: Methods And Applications, Jiun-Sheng Chen

Dissertations & Theses (Open Access)

Genetic factors account for a substantial portion of Crohn’s disease and colorectal cancer (CRC) risk. Patients with Crohn’s disease, a condition that causes chronic inflammation of the gastrointestinal tract, are at increased risk of colorectal cancer morbidity and mortality. Genome-wide association studies using single marker approaches have identified loci responsible for these diseases, but disease susceptibility from rare variants is incompletely understood. This dissertation includes three chapters, two association studies for Crohn’s disease and CRC, and a statistical method to improve the power of statistical tests.

For Crohn’s disease, we performed targeted sequencing of 101 genes in 205 children with …


Computational Approaches To Delineate Transcriptional And Functional Heterogeneity In Pancreatic Cancer, Sanjana Srinivasan May 2021

Computational Approaches To Delineate Transcriptional And Functional Heterogeneity In Pancreatic Cancer, Sanjana Srinivasan

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is an incurable disease characterized by poor survival, dense desmoplastic stroma and activating mutations in KRAS (>90%). These tumors are highly complex ecosystems composed of molecularly distinct sub-populations that exhibit a spectrum of genetic features and associated phenotypes. Despite recent advances in the transcriptomic characterization of PDAC into at least two tumor subtypes, this alone has been insufficient to define more specific patterns of oncogenic dependency. To fully leverage advancements in next generation sequencing and functional genomics, we have sought to establish computational methodologies to aid in refined target discovery, and to develop a novel …